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I. Preface

Very many realistic models assume that the state of the system
under study depend both on the past values of the state as well as
on the past values of the derivative of the state. Such systems are
governed by neutral functional differential equations {NFDE). When
the system iz dependent on the past values of the state but is inde-
pendent of the past values of the derivative the system's dynamics
may be described by a retarded functional differential equation.
OFften the principle of causslity prevails and the future state of
the system is indemendent of the past and is determined solely by
the present. Such systems can often be assumed to be described by
ordinary differential equaticns. One very powerful tocl used to
study the asymptotie behavior of ordinary differential equations is
the generalized energy functions of the models. Yoshizawa [1,2]
utilized them to give necessary and sufficient conditions for the
uniform boundedness and uniform ultimate boundedness of ordinary
and delay equations. A recent attempt was made by Lopes [3] to use
such functions to obtain a2 sufficient condition for all solutions of
and NFDE to be uniformly bounded and uniformly ultimately bounded.
This effort was not gquite complete and differs somewhat from the
ordinary and delay cases. The first chapter of this report defines
a class of NFDE for which it is possible to develop a theory of
boundedness and wltimste boundedness of solutions using Yoshizawa
type functions. As a by-product the existence of periodic solutions

for such NFDE's is proved. Numerous specifiec applications are also

given.




In chepter III, we apply the theory developed in chapter IT,
to prove the uniform boundedness and uniform uwltimate boundedness
of a neutral functional differential equation of Lurie type. In-
spired by a similar treatment by Burton [1%] we also explore the
boundedness problem for wide class of general ordinary and delay
equations. TIn chapter IV the problem of Lurie (which already has
had an extensive history [16,17]) is posed for HFDE. Using a
theorem of Cruz and Hale [5], sufficient conditions are obtained
for absolute stability for the contrelled system if it i5 assumed
that the uncontrolied plant equation is uniformly asymptobtically
stable. Both the direct and indirect control cases are treatved.

The next two chapters examine some fundamental questions con-
cerning the controllability of sysiems governed by retarded
equations and NFDE when it 1s assumed that the controls are con-
strained to lie on some compact convex subsets of the Buclidean
space Em. For linear functional differentizl equations of rehtarded
type in which the power available is unlimited and controls are un-
constrained, Banks, Jacobs and Langenhop [35] have derived necessary
and sufficient conditions for controllabiliiy in the Sobolev space Wél).
Jacobs and Langenhop [23] have obtained necessary and sufficient con-

(1)

ditions for the contrellability in W2 for linear autonomous differ-

ential difference eguations of neutral typs with unconstrained controls.
In chapter V we consider the nonlinear neutral functional differential

inclusicn

(1) 4 D(t,xt) eR(t,x.)

dt t



vhere D is a continuous opersator on IxC, linear in xt, indeed of
the form (4) in chapter V, with kernel D(t,-) = {0}, and atomic

at 0, and R is nonempty, closed and convex. Here I = [to,tl], and
C = G([—h,O],En). We use Fan fixed point theorem [22] to prove
the existence of a solution of the inclusion (1) which satisfies

two point boundary values xto = ¢0, xtl = ¢1, where ¢0,¢l belong

to C. UWe next apply this existence result to study the exact
function space controllability of the neutral functional differ-
ential system

(2) 2 0(t,%,) = £lt,x,u), ult)e alsx,) .

We present suffiecient conditions on f and § which imply exact con-

trollability between two fixed functions in C.

In chapter VI, we return to systems described by delay equations

and consider both the Euclidean and the function space controllability

of the control system

(3) x(t)

L(t,xt) + k(t,u), t > ty o

x(0)

] te [to—h,to] 2

when the available control power is limited and the controls have

values restricted to compact and convex subsets of E', We use a geo—

metric growth condition to characterize both types of controllability

This extends analogous results for ordinary differential systems

[39]-[41] and yields conditions under which verturbed nonlinear delay

controllable sysiems are controllable.

The concluding chapter indicates further areas of research.



II. Ultimate Boundedness of Solutions of Some Honlinear Neutral
Differential Equations

1. Introduction. In this chapter we study the uniform-boundedness and

uniform ultimate boundedness ol solutions of certain types of neutral
funciional differential equations. For delay systems, Toshizawa (1]

treated such problems by extending the ideas of Liapunov: he used Liapunov
functionals whose properties are similar to thoss he utilized in his study

of ordinary differential equations [Z2]. 1In (3], Lopes combined Liapunov
functionals and Razumikhin techniques to prove ultimate boundedness. Aside
from the fact that the applications of his theorr involves the verificaticon
of more conditions than are used in cases [11 arnd [2], the results in [3]

are not quite complete. His conditions are sufTicient but not necessary.

In this paper Razumikhin technigues are avoided; sufficient and necessary
conditions are given for uniform boundedness and uniform ultimate boundedness.
in terms of Liapunov functionzls alone. This reduces the number of conditions
to be veritTied.

An important aspect of our coniribution is the treaiment of several non-
trivial linear and nonlinear examples. BExplicit Liapunov functionals are
constructed, and the existence of periodic solutions deduced by applying a
result of Hale and Lopes [k] on the existence of periodic solutions of compact
dissipative systems. Unlike the aprlications in [2] the use of Liapunov

funciionals does not put some restricticns on the delay.

2. HWotation, Definitions and Preliminaries. Let h > 0 be a given real number,

En, an n-dimensional linear vector space with norm |+| and C = C([-h,0},E") the
space of continuous functions mapping [-h,0] into E" with f[6([= sup [4(0)]
-h-<8<0



for ¢ eC. Let to be a real number and f,g are continuous functions taking
[to,w)xc ~ E®.  Assume that g is linear in ¢ and that there exists an nxn-
matrix function n(t,0), te [to,oo), 6 € [-h,0] which is of bounded variation
in 6 and there exists a scalar function 2(8) continuous and non-decreasing
for s e [0,h], 2(6) = 0 such that

0

glt,0) = f [agu(t,0)14(e)
-h

IIO (agu(t,e)le(e) < ath) sup [4(e)]
-h ~h<6<0
for all te [ty ,=), ¢ €C.
Define a functional differential operator
D(+): [ty.=)xC > E"
by
D(t)¢ = ¢(0) - &lt,¢), telty,=), ¢ eC.

We shall study the functional differential equation of neutral type given by

4 _

(1) it D(t)xt = f(t,xt), t > t,
b'e = ¢
o

where xt e C is defined by

x_t(G) = x(t+8), -h < 8 < O.
We shall assume that f(t,¢) is locally Lipschitzian in ¢ and takes bounded sets
into bounded sets to ensure the existence, uniqueness and continuous dependence
of the solution x(to,cb) of (1) on the initial data. Here x(to,q)) is the solution

with x, (to,¢) = ¢ and its value in E" at time t will be denoted by x(t; t0,¢).
0
Observe that the initial value problem (1) is equivalent to the integral equation
t
(2) D(t)x, = D(t )¢ + [ £lt,x)ds, t 2t
t
0

o



In Cruz and Hale [5] the concept of a uniformly stable operator was intro-

duced and was shown to imply the following.

Definition 2.1. The operator D is uwniformly stable if there are constants

B,a > O such that the solution x(to,¢) of the "difference eqguation"

(3) D{t)x, = 0, t > t,

xto = ¢, D(to)¢ =0

. A ~a(t-t
satlsflesI]xt(to,¢)||§_88 o O)H¢IL t i.to'

Definition 2.2. We say that the solutions of (1) are uniform bounded if for

each a > O there exists B(a) such that if [|¢]| < « then ”xt(to,¢)” < B(a).

We say that the solutions of (1) are uniform ultimate bounded for bound B if
there exists B > 0 and for each a > 0 there exists T(a) such that if ”¢” <a
we have th(to,¢)H < B for all t > ty + T(a). If V: [ty ,=)xC > E is continuous
we define the "derivative" V(t,¢) along solution (2) as

(t,8) = T py(t50) = Tm, IV(t.x,,, (£,0) = V(t,p) ],

-
h>0 t+h

The following two lemmas are crucial in our investigation.

Lemma 2.1. (Cruz-Hale [5]). Suppose the Ak’ k=1,2,...,N are nxn constant

matrices Tye? 0 2Ty < h are real numbers such that the ratio T_/Tk are rational
J

if ¥ > 0. If

N
(4) D(¢) = ¢(0) - ¢(-1, )
kzl At -1y

and all roots of the equation
5]

N -T
det[I - ) ) =0
k=1 Ak

have moduli less than 1, then D is uniformly stable.



Lemma 2.2. (Cruz-Hale [5]). If D(t) is uniformly stable, then there exists
positive constants a,b,c,d such that for any h eC([tO,W),En) the solution

x(to,¢,h) of the equation

(5) D(t)x, = h(t), t > £, T, =
satisfies
6)  llx(tg.e.m < ol + ¢ suwp [n(w]) +a sw [n(w]

toipgﬁ o<u<t

for all t > t Furthermore, the constants a,b,c,d can be chosen so that for

o
any s e[to,w)

a(t—s)(b”¢” +c sup |h(u)|) +a sup |n(uw)l.

(7) Iz, (tg-¢-0) ]| < e
o<u<t s<u<t

4

Definition 2.3. Let It

D(t)xt = f(t,xt) with D and f w-periodic. We say it

defines a compact dissipative process if there is a bounded set B:iIC such that
for any compact set H there is a TO(H) such that

+ T (H).

x(t,tO,H)S;B for all t > %, o

Clearly a uniform ultimate bounded process is compact dissipative.

Proposition 2.1. [L4]. If the w-periodic NFDE (+) with uniformly stable D

operator defines a compact dissipative process, then it has an w-periodic

solution.

3. Ultimate Boundedness of Solutions of (2). In this section we shall obtain

a sufficient condition for boundedness by means of a Liapunov functional.
Throughout what follows the set S of ¢ is the set of ¢e C such that [[¢|| > R where

R may be a large positive constant.

-1



Theorem 3.1. Suppose there exists a continuous functional V: [0,2)xS such that
(1) u(|D(t)e]) < v(t,9) < V(e[

where u(r) is continuous increasing positive for r > R and u(r) » = as

r » o, and v(r) is continuous and increasing;
(i1) V(t,¢) < - w(|D(%)e]),

where w(r) is continuous and positive for r > R.

If D(t) is uniformly stable then the solutions of (2) are uniformly bounded

and uniform ultimate bounded.

Proof. Suppose the constants a,b,c,d are defined as in Lemma 2.2. TFor any
a >0 (a > R) choose B(a) so that

ba < 5, v(a) < u(B/2(c+a)).

If ¢ €C and | 4] < o, suppose that at some t, we have (B (tys¢)]| = 8. Since
1
”xt(to,¢)” is continuous in t and ”xto(to,¢)” < o, there exist t2,t3,

t, <t

0 §_t3 j_?v such that ”xtl(to,¢)n = a,|x(t3; to,¢o)| = B, and for

2

t2 <t < t3 we have

a < ”xt(t0’¢)” < B.

Also for t, <t < t5 <%, ”xt(to,¢)“ > a>R. Eence xt(to,¢)s S. Consider
the function V(t,xt(to,¢)). Condition (ii) implies that V(t,xt(t0,¢)) is nop-

increasing and condition (1) implies that
u(|D(t)x (£350)]) < V(t,x (£,,9)) < V(t,,¢) < v(a) < u(g/2(c+a)).

Consequently
[D(t)x, (t,-¢)| < B/2(ctd)

for all t E[tQ’tl]' Since D(t) is stable we deduce from Lemma 2 that



th(to,¢)" < bfj¢]| + (c+d)B/2(c+d) < ba + B/2 < B.

That is "xt(to,¢)" < B for all te [t2,tl]. But ”xtl[t0,¢)" = 8. This is a

contradiction. Hence if || ¢|| < o we have ”xt(to,¢)” < B(a) for all t > b4,
which proves uniform boundedness.
o

For a fixed o. > o where % = limf[a 1

1 1 EEJ > R there exists a Bl(al) > 0

such that if |[¢]| < o, we have ”xt(to,¢)” < By for all t > t,. This follows

1 o’
from the uniform boundedness already proved. Now choose vy = y(B,a) > 0 so
that

o
(8) eV (Bo0) (10 o g /o(cra)) <%

where B in (3) is the uniform bound corresponding to o in the first part of

the proof. Since f takes bounded sets into bounded sets there exists an L > O

such that lf(s,xt(t0,¢)| <L for s > t, lol <. Let k = kx(a,B) be the smallest

integer such that

k > via)/[(ay /22)" 2/,

A

Suppose now there is a solution x(to,¢) of (2) with |¢]] < « ana ”xt(to,¢)” > oy

for ted = tj <t j_to+2(l+ky). Since o, > R, we can consider the function
V(t,xt(to,¢)). Condition (i) and (ii) imply that

u(|D(t)x, (t.)]) < V(t,x, (£,4)) < V(t,56) < v(a) < u(B/2(c+a))
so that ID(t)xt(t0,¢)] < 8/2(c+d) for all ted. In (7) let s =5, t = s, Where

= to+(2k—l)y, s! =t +2ky, k = 1,2,...,k+1. Then by Lemma 2,

Sk k0
o) < [xy(tg.0) | < fexpl-alsf-s, ) 13(b]s] + ¢ sup [D(u)x, )]
t_<u<s
0=
+d sup [D(u)x_|
s, <u<s' u
k==K



< e (ba + cg/2(c+a)) + a sup [D(u)x |.
?
8, SUS,
That is,
o
o, < 7% + d sup

1= 8 Su<s

' ]D(u)xu|f

k

Therefore there must exist a tk in [Su’sé] such that

1

o | 2 5q> FFL,2,.. .kt
k

|D(t,)s
since [¢] < o and [f(s,x_(t;>¢))| < L for all s > t, on the intervals

o o ¢
1 1 1
= - +  —— — .
Ik [t] Lar, ° t] hdL] we have ]D(t)xt] > Ya As a consequence of this

and condition (ii), V(t,xt) < —w(al/hd), te Ik’ x=1,2,...,k+1. By taking a
large L if necessary we can assume that these intervals do not overlap, and

hence we have
o 0.
L 1
V(tk,xtk) < V(to,¢) - W(al/hd)2d(k—l) < v(a) - w(al/hd)zd(k—l)

If k-1 = K then v(tk,xt (to,¢)) < 0, which is a contradiction since

k

o
u(]p(t, )x, |) > O because |n(t )x, | > = > R. Therefore there must exist a
KTy L — ha

t' in the interval J such that th,(to,¢)H <ol IFt 2 b+ T(a),

0

T(a) = 2(1+K(a,8)Y(2,B8)) we have ”xt(to,¢)” < 8,. This completes the proof.

The converse of Theorem 1 can be given under some restrictions of the

operator D.

Theorem 3.2. In (1) assume that D satisfies the inequality

|p(t)e] < m|[oll ,
¢ €C, wvhere t > 0, and F is locally Lipschitzian in ¢ uniformly in t. Assume
that the solutions of (1) are uniform bounded and uniform ultimate bounded.

Then there

10



exists a continuous Liapunov functional V{t,¢) on IxS which satisfies the
following conditions

(a) ul|D{t)e]) < V{t.¢) < v(]ol),

() V (t,4) < -w(|D(t)s])
where u,v and w have the same properties as in (i) and (ii) of Theorem 1.
The condition (b) can be replaced by

(b') V(t,9) < -aV(t,¢), a > O.

(e) V is Lipschitzian, i.e., for any 9p50,€ C, t e[O,t0+T],there exists
an M(T) > O such that

[v(t,00) = V(t.0)] < Mo -4, l-

The proof of Theorem 3.2 needs the following Lemma, which was communicated to

the author by Professor Jack Hale.

Lemma 3.1 (Hale). Assume that D in (1) satisfies the inequality
ioce)el < nlel
for ¢ £ C where t 3_t0, and F is locally Lipschitzian in ¢ uniformly in +.

Then for any r. > O there is a constant L = L(ro) such that

0
L{t-t
I, (bgotp) = 2, (o000l = E780) g o
for all t z_to, and ¢l,¢2 for which
I, (£550,)] < x4 =, (tg>0 )l < g

11



Proof of Theorem 3.2. Since the solutions of (1) are uniform ultimate bounded

for bound H, say, for any t. and any o > O there exists T{a), such that if

0
l¢]] < @ we nhave ﬂxt(to,¢)n < H for all t 3_t0+T(a). Since the solutions are
uniform bounded, for each a > 0 there exists B(a) > 0 such that if ”¢” < a we
have ”xt(t0=¢)” < B{a), for all t Z_to. Also there exists L(g{a)) > 0 such

that if ”¢1H < B and H¢2” < B we have

[£(t50,) = £(t,0,)[ < T(BCa)) [lo)-0,]-

We can assume T(a), 8{a), L(B(a)) are continuous increasing in a. Now define

V(t,$) as follows

V(t,¢) = sup G(|D(t+1)xt+_[(to,¢)|)eT
>0

for 0 < t < =, ¢ €C where

g - H £ >H
G(g) =
0 0 <¢ < H.
This G is a non-negative continuous function for £ > 0 and G(£) > » as [g]| + =.
Mso |a(g) - G(g')] ;zlg-g'l. Obviously G(]D(t)¢|) < V(t,¢). We also have
= T T
V(t,9) = sup G(LD(t+r)xt+T(tO,¢)|)e < sup G(Nth+T(to,¢)H)e .
>0 >0
From the ultimate boundedness and boundedness assumption, there exist u(“¢“)

and B(||])) such that T(t,¢) < u(l|¢]) andl|x,, (t,.0)]| < 8([¢[). Hence

t+T

V(t,9) j_G(N[B(”¢”)eu”¢” = v(||¢]]). We have now proved that G([D(t)¢[) < V(t,¢)<

v(||¢])- One can now take G(|D(t)¢|) = u(|D(t)¢|). This verifies a. Since (a)

12



holds, for any h > O there exists 1' such that

V(t+h,x, . (t_,6)) = G(|D{t+h+t')x

)
t+h' "0 (t550) e’

t+h+t !
Let 7 = t'+h, then 1' = 1-h and

V(t+h,xt+h(to,¢)) = G(]D(t+r)xt+r(to,¢)|eTeI T

T = V(t,¢)e_h.

'—-
< V(t,)e®
Hence

V(t+h,x, . (t,8)) - V(t,0) < -V(t,4)[1-e"P].

t+h
From this we deduce that V(t,¢) < —V(t,¢) < =G(|D(%t)¢|), verifying (b) or (b')
with o = 1.
To show that (c) holds we note that if t,t e[O,to+T]
[V(t,e,) - V(t,9,)]

T
< sup e |D(t+t1)x (ths0.) = D(t+1)x (t . ,0,)
>0 t+t’ 0’71 t+1 072 l

| A

T
Ti??p e N"xt+T(tO’¢l) - xt+r(t0’¢2nl >

T NeLB(a)(t+T‘to)l,¢l

|A

sup e
T>1>0

~o,1l

by Lemma 3.1,

E_Ne(Ls(a)+1)(to+2T)I|¢1_¢2”_

Hence
V(t’¢l) - V(t:¢2) i.M”¢l~¢2”

where M = NeL<B(G)+l)(tO+2T) )

Finally, to prove V(t,$) is continuous in t,$ we observe that

V(t+h,o *+e,) - V(.9 |

< [V(trn,optey) = VitHn,x, s (6,60+¢,)) |

13



| Vern,x  (B200+0,)) = V(t,0%, )]

+ [ V(t,950,) - V(s
Since V is Lipschitzian,
| V(t+h,0 +o)) = V(t+h,x, o, (£,94%0,))]
_<_ k"Xt(t >¢)O+¢l) - xth(ta¢o+¢l) ||-
Because the solution x(t;to,¢) is continuous given any € > O there exists
a § > 0 such that if lh[f_é the right hand side of the above inequality is

less than e. Also

[V(ts0%e,) = V(ts9 )] < Ko fl< e
whenever ”¢1H < §. Lastly,
'V(t+h:xt+h(ts¢'o+¢l) - V(t )¢O+¢l)l < "V<ta¢o+¢l)[l"e_h:ls

so that if h is arbitrarily small the right hand side of this inequality can be
made very small.

This proves the theorem.

L. On the Boundedness and Periodicity of Certain Scalar Nonlinear Neutral Equations.

The applications in this and next sections are the raison d'etre of the
theory presented in Section 3. The calculations involved are less cumbersome
than would have been the case if the ideas in [3] were applied. For example,

the equation in the transmission line problem, namely,

(9) é%{x(t)—qx(t—h)] = -ax(t) - bx{(x-h) - Yx3(t) + q X3(t—h) + p(t),

where y > O, |q| < 1, a,b are constants and p is a w-periodic function, which
was treated in (3), can now be proved to be uniform ultimately bounded by a
2

shorter calculation. Indeed consider V(t,x) = x2 then u(s) = v(s) = s, so

that condition (i) of Theorem 1 holds. It remains only to verify condition (ii).

1k



As in [3], computing the derivative V(Dxt) we have

D3 YD3 YD2 D3

. : 3
V(Dxt) = —2th((l + qx(t—h))3 _ax (t-h) - D(t) 241 p o+ géﬁiﬁ;ﬁl)
D
Ifq=0,
v 5_-th if D is large.

If ¢ # 0. By taking R sufficiently large so that x(t-h)/D < N < ———— and

ID| > R we have V < -y & Dh, where

|_E(t) - (b+qa)x(t—h)} <

vD YD2 YD3

§
5 -

We see that condition (ii) holds and since D¢ = ¢(0) - q¢(~h) is uniformly
stable (9) is uniformly wltimate bounded and hence w-periodic. Observe that
the existence of an f: [R,») - E' and its properties are completely unnecessary
here.

The generalized Lienard equation,

(10) ¥+ glt,x)x + £(x) = p(t),

has had an exXtensive history. For an excellent summary of results up til 1972,
on the continuability, boundedness, oscillation and periodicity of solutions

of (10), see Graef [6]. An equation similar to (10) but with history-dependent

restoring force is the Lienard equation with delay, namely

(11) #(t) + gx(x(t) + £(x(t-h) = 0, h > 0.
The equation (11) was studied by Hale [T, Section 31] and Grafton [8] who proved
the existence of a nontrivial periodic solution, period greater than 2h.

In this section we shall initiate a study of the Lienard equation of neutral
type, namely
(12) %(t) + ok(t-h) + g(t,x(t)+ax(t-h))x(t-h) + £(x+ x(t-h))

= p(t,x(t),x(t-h),x(t),x(t-h)),

15




where h > 1, 0 < a < 1, or its equivalent

(13)  2(x(t) * a(x(t-h)) = ¥(t) + ay(t-h)

g%{y(t) + ay(t-h)) = p(t,x(t),x(t-h),y(t)y(t-h) - £(x+ ax(t-h))
- glt,x(t) + a(x(t-h))y(t-n)
obtained from {12) on setting
é%-x(s) = y(s).
Define the operator D by D¢ = ¢(0) - A¢(-h) = x(t) - Ax(t~h) where

Observe that by Lemma 2.1, D¢ is uniformly stable, Indeed the roots of the

equation

(14) det[I - A0 %] =0

has modulii less than 1. To see this note that (14) is equivalent to

ph-f p = 0.
Denote Dx,_ = x(t) + ax(t-h), Dy, = y(t) + ay(t-h) and clearly (13) is the
same as
(15) < px, = by

dt Tt t

a

~p(t,x(t),x(t-h)y(t),y(t-n)) - £(Dx.) - g(t,Dx, )Dy,

&|
&
]

Theorem 4.1. In (15) assume that p, £ and g are continuous in their respective
arguments, £, g and p take closed and bounded sets into bounded sets. Further

assume that
(i) glt,¢) > a > 0 for "¢” >A>0

where a,A are positive constants;
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(ii) f(y)segn v+« as |Y| > =;

(iii) there exists a k > 0 such that lp(t,x(t),x(t—h),y(t),y(t—h)| < k for
all t,x(t),x(t-h)y(t),y(t-h). Then (15) is ultimately uniformly bounded.

If in addition p is w-periodic then there exists a w-period solution of (15).

Proof. Consider the continuous functional

(16) V=V, +V

1 2
where Dxt
2

(17) av, (x,y,) = (Dy )" + 2 é’ £(s)ds

V2 = Dxt sgn Dyt if ]Dxt| i_IDyt|

= Dy, sen Dx if |Dx, | 2 | Dy, | -

Evidently

2v, > 2|0y, |,
so that Dxt
(18) ov > 2 f f(s)ds + (Dyt)z - 21Dyt|

0

for all xt,yt.
From (18) it is clear that there exists an ¥ > 0 such that if IDxt|2 + IDytl“ki H
the right hand side of (18) is positive, and condition (i) of Theorem 3.1 holds.

Also

V(ls)(xt,yt) = —Dytg(t,Dxt)Dyt + Dy, P>

from which we deduce that

(19) ¥ < -a(oy,)? + x(0y,)
if |Dy,| > A end
(20) \'r_<_131 if |oy, | < A

for some constant Bl. Furthermore

17



(21) Vo, = oy | if |px | < |oy, |

[-g(t,Dxt)Dyt - f(Dxt) + p]sgn(Dxt)
if |Dxt| 3_|rwt| or

(22) v, < -£(Dx, )sgn(Dx, ) + B

2 2

if letl > IDyt] for some B,. Combining (19) and (21), we have that whenever

|px, | < |oy. |,
(23) ¥ < ~a(py)® + (k+1)|Dy,| < ~(e2f Dy |

+
provided |Dyt| > [gi%;ll-, A], Combining (20) and (22) we have

V< —L(Dxt)sgn(Dxt) + B, + B,

whenever IDxtl 3_|Dyt|, IDyt <A,

so that
(2b) V < -Bl£(Dx,)|
for some B; > 0 provided IDxt] > B),. Combining (23) and (24) we deduce that
(25) b o= py | - —i% |2(px,) |
provided
min[[Dxt|,|Dyt|] > max[A, 2L%§ll , Bh]'

Because |f(y)| » « as || > «, (25) shows that condition (ii) of Theorem 3.1 is

satisfied.

Since D(t) is uniformly stable we deduce from Theorem 3.1 that the solutions

of (15) are uniformly bounded and uniformly ultimate bounded.
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5. Linear Nonhomogeneous Neutral Equations. We shall study the system of

neutral equations described by
(26) S [x(t)-Cxlt-h)] - Ax(t) = p(t,x(t),x(t-h))

where x(s) is an n-vector valued function, C and A are nxn real matrix
functions, and p is n-vector valued function which is locally Lipschitzian
in the last two arguments and maps bounded sets into bounded sets. We have

the following result.

Theorem 5.1. 1In (26) suppose C is symmetric and all the roots of the equation
(i) det[I - Cp"h]

have modulii less than 1;

(ii) +the eigenvalues Ay of A satisfy A; < - Xg < 0, i=1,2,...,n;
and those of CAC satisfy ”i > Mo > 0, i=1,2,3,...,n; and the eigenvalues
6i of A + CAC satisfy 61 < —60 < 0, i=1,2,...,n.

(iii) The function p satisfies |p(t,x(t),x(t-h))| < M, for all t,x(t)
x(t-h).
Then the solutions of (26) are uniformly bounded and uniformly ultimately
bounded. If, in addition,

(iv) p is w-periodic then there exists a w-periodic solution of (26).

Proof. It follows from Lemma 2.1 and condition (i) that the operator
D¢ = ¢(0) - C¢(-h) is uniformly stable. Let
0
(27) v(¢) = (Do,Dg) + [ (CACH(8),0(8))ds,
~h
where (+,+) denotes scalar product in En. With this definition we can take

u(r) = v(r) = V(r),

so that condition (i) of Theorem 3.1 is satisfied. Next compute the derivative
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of V:

V(¢) = (AD$,D$) + (A9(0),6(0)) + (CACH(0),4(0)) - 2(CAC$(-h),¢(-h))
+ 2Dp(t,9(0),9(-n)).
Hence
V(¢) = (ADg,D) + ((A+CAC)$(0),4(0)) ~ 2((CAC)é(~h),6(~h)) + 2D¢p.

By condition (ii),
(aD,D9) < -1 | D8],
((a+cAC)$(0),8(0)) < =5, |6(0)|?,

~2((CAC)$(-n) ,8(-n)) < -2u|o(-n)|.
By hypothesis (iii)
|2D¢p(t,4(0) ,6(-h)| < 2M|Dg].

Hence

(8) < A |D81? - 6,16(0)]2 = 2u | (o-n)]% + 2u]Do].

If we now choose

A
—2he?| - 2ulg] > o,
for sufficiently large |D¢l, that is |D¢| > R, say, then
A
(28) (e) < - o8

Since (28) holds, condition (ii) of Theorem 1 is satisfied. Tt now follows
that the solutions of (26) are uniformly bounded and uniform ultimate bounded.

The existence of a periodic solution follows by Proposition 2.1.

6. DNonlinear System of Neutral Equations. Consider the nonlinear system of

ordinary differential equations
(29) x = £(x,t)

where
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of,
x,f are n-vectors. Let fx be the Jacobian matrix (SEL) and fi its transpose.

J

The asymptotic behavior of (29) has been investigated under various assumptions
on the matrix

J(x,t) = %[Afx + sz]

where A is a positive definite éymmetric nxn constant matrix. (See Demidovie [9],

Ezeilo [10] and [11]). 1In this section we shall study the system
(30) () -0x(t-h) ] = £(t,x(t) ,x(t-h))

in which C is an nxn real constant matrix, x(s) and f are n-vectors; f maps
bounded sets into bounded sets and it has continuous partial derivative in the

last two arguments. In (30) let Da’ a=1,2,3 be symmetric nxn matrices

al) aji
where
afi
dilJ = 3¢j(0) (t,4(0),6(-h))
afi
dei'j = aq,j‘(“‘__h) (t,0,¢(-h))
Bfi
4335 a¢j(0) (t,4(0),0)
Let

T .
Ja = ADa + DaA’ i=1,2,3

where A is a positive definite symmetric nxn constant matrix. We shall prove
the boundedness of solutions of (30) under certain restrictions on J - Let

D = ¢(0) - Cé(-h). Then (30) is equivalent to the system
(31) 2041 = £(£,6(0),6(-h)).

We assume that D is a uniformly stable operator.
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Theorem 6.1. In (30), suppose C is symmetric and all the roots of the equation

det[I - q;"h]

have modulii less than 1. Let A be a real positive definite symmetric nxn-

(i) A, < =6, <0, |¢(0)| >R, [¢(-h)| >R,

App €8q5 (0 <ay <), [¢(0)] <R, Jo(-n)] <&,

1 1

B 2T by N aam A
100 all v 7 U, 4alla

(ii) the eigenvalues X); of the matrix -J,C, where C is in (30) satisfy

[

Aj . < =8, < 0,
L3 L

Ay < 8y, (0 <8y <) [6(0)] 2R, |¢(-h)] > R.

la(0)] > R, (a(=-n)! > R,
I rh .- (g L S b

5

Furthermore,

(111) ol < 4,, for all t and ¢(-h), |-ICll < a4, for all t and ¢(0),

where the constants Gl’ah’A2’A3 are such that

36 8
_ 2k Ly
(32) 3-3 = 8 - 8”C” > 0,
a -fl-> a2
3 8="2?72
61
where a, = 5. lelf - (A2+A3).

(iv) Suppose also that |f(t,0,0)|< M, for all t. Then the solutions of (30)
are unfiromly bounded and uniform ultimate bounded. If in addition f is w-

periodic there exists a nontrivial w-periodic solution of (30).

denotes matrix norm.

Remark. In (iii), {-

The proof of the Theorem rests on the following Lemma, a version of which

proved very useful in Ezeilo [10] and Chukwu [12].

3L,
Lemma 3. Let g: E'xEPXE® > E® be a function such that g(t,9(0),4(-n) ang 56—%67 .
J
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1 < ij < n are continuous in t, ¢(0), and ¢(-h). Suppose there is a constant

M such that -~ < M, and the characteristic roots of the matrix

og. 2g,
1 i i
E#B¢J(O) ¥ a¢i(o))

satisfy
Vi <M, k=1,...,n

uniformly in the arguments. Then the scalar product g defined by
G = (g(t;¢(0)+4;h,6(~n)) - g(t56(0),9(~h),n)

satisfies

__Mlhl2 for all t.

[}
A

Proof of Theorem. Consider the function V defined by

(32) V(¢) = (AD$,D¢),
where Dy = ¢(0) - C¢(-h) and (+,-) denotes the inner product in E®. Since A
is positive definite V is obviously a positive definite quadratic form in Dé.

In fact there are positive finite constants n.,n. such that

1°72

2 2
(33) n D] 2 V(s) 2 n,[Dg|".

Take u = n2|D¢]2, v = nl|D¢|2 in condition (i) of Theorem 3.1. Now compute the

derivative V )(¢) and note that A is symmetric:

(30

V(¢) = (Af(t,¢(0),6(~h)),D¢) + (AD¢,T(t,s(0),06(-h))

2(A£€t,9(0) ,4(-h)),D¢)

2(Af(t,$(0) ,6(-h)),4(0)-Ce(-n))

2(Af(t,4(0),4(~n)),$(0)) + 2(Af(t,4(0),4(-h),~Cp(-h))

+ .
N1 N2
Now

Nl = 2Ul + 2U2 + 2U3,

where
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U, = (Af(t,4(0),6(~h)) - Af(t,0,¢(-h)),4(0))
U, = (Af(t,0,4(-h)) - Af(t,0,0),$(0))

U, = (Af(%,0,0),4(0)).

3
Also
N, = 2U, + 2U_ + 2U
2 Y 5 6
where
1T = (ael+ A(0) 4(_0WYY_ Arl+ A0 NY _oaf_1Y)Y
“Yy VAIVNL QAU 5@ V=01 /= RI\T,P\U/ 53U/ =00\ =01/

U. = (af(t,¢(0),0) - Af(t,0,0),-C¢(-h))

U6 = (Af(t ;O:O) 9—C¢(_h))

By applying Lemma 3 to U,, i=1,2,4,5, we deduce that

Yy

é
(5,6(0),6(0)) < - 2{4(0)|% + 8,

° 2
U, = (=3;Co(-n),0(-h)) < - —e(-n)|" + B,

for all ¢(0),¢(-h) and t, where 81,8)+ depend only on Gl’ah’Al’Ah and R appearing
in (i) and (ii). Also by (iii)

Y2

(3,0(-1),0(0)) < a,([6(0)][6(-n)])

Us

I

(=35Co(-n)»9(0)) < aj([¢(0)[[o(-n)]).

Because A and C are constant matrices and f(t,0,0) is bounded,

Us

A

63l¢(o)|,

Us

A

56|¢(‘h)|>

where 63 and 66 depend only on A, C, and M in (iv).

On gathering all these estimates we obtain

8 §
(34) W(6) < = —18(0)|% = 2o(-0)|% + (a3+8,)(]6(0) [+ |o(-n)|
+ 63|¢(0)| + 66|¢(—h)| + By + By

2h



The first three terms on the right hand side of this inequality can be recast
in the form

- Da
z8,

(2 |
1 2!

2
~aglDell® - 2 [e(0) (0} |

| &
1Y

—~
|
jng

§ §
- H6(0)]? - lo-n)|

where
IDsl? = leCo)|-fcll |o(-n)|1?
and
= E-:-L— a = 6—1-
&% T 7§ » 178
61
e, = 5-lcll - (8 %4 5)
36 8
h 1 2
az =g - glcl

Observe that a_. > 0, a. > 0. Also by (iii), a_. > 0 and a,a_ > a

2 Hence
0 1 3 1%3 2 8y - Hence

§ J
(0) < -2 [1D8]1% ~ gH(0)|% = Flo(-n)] + 6 06(0)] + s]o(-n)|
+Bl+82.

Hence for |¢(0)| and |¢(-h)| large, say, |#(0)| > R, [¢(-n)| > R,

- 2
v(¢) < -a [|De|]".
Condition (ii) of Theorem 1 is met. Since D is uniformly stable the theorem

follows.
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III. Boundedness of Ordinary and Hereditary Systems of Lurie Type

1. Introdpction

In the problem of Lurie

(1) X

i

Ax + bf(o),

ctx - rf(o),

Qe
]

where A is an n X n constant matrix whose characteristic roots have
negative real parts, X, b and ¢ are n-vectors and 0o, £ and r are scalars,
one tries to find a necessary and sufficient conditions for the absolute
stability of (i). One major approach deals with showing that a certain
Liapunov function, whose existence is guaranteed by the uniform asymptotic
stability of the equation

(ii) x = Ax,

is positive definite with negative definite derivatives with respect to
(i). This then yields conditions for bounded solutions to be uniformiy
asymptotically stable. In this procedure, independent arguments are needed
to show that solutions are bounded. [13]. In a more recent paper Burton [14]
took the significant step of attacking the problem of boundedness directly
and independently of the Lurie problem. When £(0)/0 > 0 as IOI > ® he
obtains necessary and sufficient conditions for all solutions of (i) to

be uniformly ultimately bounded.

In this chapter we consider plant equations of more general types, say
nonlinear ordinary differential equations, nonlinear functional equations
of retarded and neutral types. We assume that the uncontrolled system is
uniform-bounded and uniform ultimate bounded and then use the inverse
theorems ensuring the existence of Liapunov functionals for the controlled
system, ([15], [1], and Chapter II) and obtain sufficient conditions for the

uniform boundedness and uniform ultimate boundedness of the feedback system.
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2. Notations, Definitions and Preliminary Results.

The following notations will be used in this paper: jou denotes the
Euclidean n-space and the norm of any xe E is written as |x|. For any
h>0, C denotes the space of continuous functions mapping [-h,0] into E"

with the sup norm denoted by |

. For any continuous function
x(0),-h < 0 <A, A0 and fixed t, 0 < t < A, X, denotes the function
xt(e) = x(t+8), -h < 6 < 0.

Let to €E, and g be a continuous function taking IXC, I = [tO°°] into
E'. Assume that g is linear in ¢ and that there exists an n x n matrix
function u(t,6) tei 6 [-h,0] which is of bounded variation in 6 and
there exists a scalar function 2(6), continucus and non-decreasing for
s € [0,h], 2(0)=0 such that
(D g(t,¢) = fz [dgu(t,8)14(6)

0
| [ [dgu(t,0)16(8)| < &(s) sup|¢(8)
=S

-s5<6<0
for all teI, ¢eC.
Define a functional differential operator
D(*): 1IXC > E",
by
(2) D(t)d = $(0) - g(t,9), te I, $eC.

We shall study the following differential equations:

dx

(3 qc = Ale,x) ;
) = A(e,0) + bE@)

g% = B(t,x) - rf(o)
(s) & - F(e,x) ;
(6) & = o(e,x,) + bEO)
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- = E(t,xt) - rf(o)

and

i

) Sr ®x) = Fe,x)

(8) a
dt

do
dt

(D(t)x,) = F(t,x) + bE(),

= G(t,D(t)xt) - rf(0).

Here A is a continuous function from IXC+E?F is a continuous function
from IXC*E". Both A and F are Lipschitzian in their second arguments
respectively. Also x, bi:En; f, r and 0 are scalars. B is a continucus

. n 1 1 n, .1 . .
scalar function from IXE > E~, E: IXC*E™, and G: IXE'>E~. D is as defined

in (2).

We now define the boundedness concepts we need for the different systems.

Definition 2.1. (i) The solutions x(t ,xo) of (3) are said to be

uniform-bounded, if for any o>0, there exists a B(o) such that if |x0|§q

we have fx(t,xo)l < B(o) for all t > to.

(ii) The solutions x(t,xo) of (3) are said to be uniform-ultimate-bounded

for bound B, if there exists a positive constant B and for any 0>0 there
exists a T(@) such that if |x] <o we have |x(t,x0)]_§ B for all t Z_to + T(a).
Here x(t,xo) denotes the solution of (3) with x(to,xo) = X In the same

way one can define the same concepts for the functional differential

equation (7). We shall denote the solution of (5) or (7) by}(t0,¢) if

X, (to,¢) = ¢, the initial function ¢ is assumed to belong in C.
0

For example, the solutions of (7) are uniform-bounded if for any
>0 there exists a B(a) such that if ”¢|L§ o, we have |kt(to,¢)" < B(w)
for all qzto.

In Cruz and Hale [5] the concept of a uniformly stable operator was
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introduced and was shown to imply the following:

Definition 2.2. The operator D in (2) is uniformly stable if there are

constants B , >0 such that the solution x(t0,¢) of the "difference
equation"

D(t)xt =0, t>¢t)

xto = ¢, D(t,) =0,
satisfies [, (tg, || < 847750 |fg]],
for all t>t,.
If V: IxC—+E is continuous we define the '"derivative" 6(t,¢) along

solutions of (7), say, as

P(e,0) = V7, (6,) = Lim L [Vt %,y (529 -V(E,0)]

Definition. We say F(t,x)€ Co(t,x) if for any compact set E CfElen,
there exists a constant K(ﬁ ) such that, for any pair of points (t,x)e ) .
(tl,xl)g £ , we have
(e, - F(eb,xD) | < K[| e-t'] + |x-xl] ]
where K is independent of t and may depend on x.
Moreover, we shall say that F(t,x)E;CO(x) if for any compact set
E CfEn, there exists a constant K(E:t) such that for any pair of points
xgE ,xleE,
lF(t,x) - F(t,xl)l f_K[x—xll.
If K is independent of t we say

F(t,x)elab(x)

The following converse theorems are reproduced from [15], [1], and Chapter II.

Theorem 2.1. Consider the system (3) in which Ae Co(x). If the solutions

of (3) are uniform bounded and uniform ultimate-~bounded for bound Bl, there
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exists a Liapunov function V(t,x) defined on I, lk” 2> R, R>0 such that
(i) a(lxl) < V(t,x) f_b(lxl), for le >R, teI,
where a(r) is continuous increasing a(r)>0 for r>R -and a(r)2e as rr>;
b(r) is continuous increasing, b(r)= as r-w;
(ii) G(t,x) < —cV(t,x), >0,
with R>Bl.

(iii) If A is bounded for IXI bounded, and if AE:Eb(x) then V(t,x)e

Eo(t,x) with Lipschitz constant M.

Theorem 2.2. [1] 1In (5) assume that for any >0 there exists an L(t,0)>0
such that if ”¢l|§_u, we have

(9) |F(t,9)| < L(t,®)

where L(t,0) is continuous in t; and that F(t,9) SE%(¢). Let S be the
set of ¢ £C such that |MIIZ_H, where H is a positive constant which may
be large.

If the solutions of (5) are uniform-bounded and uniform ultimate
bounded there exists a continuous Liapunov functional V(t,¢) on IxS which
satisfies

1) a(olp < vie, 9 < (o],
where a(r) is continuous, increasing, positive for r>H and a(r)-2® as r>o,
b(r) is continuous and increasing,

(1) Vg (£,0) < aV(t,9), 00,

« a constant

(iii) V(t,d) aEO(qa).

Theorem 2.3. (Chapter 1I). Consider the system (7) where F(t,¢) is locally
Lipschitzian in ¢, and where the uniformly stable operator D satisiies

|D(t)¢| < Nll¢ll, for all tel,
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¢ €C with K the Lipschitz constant for F. If the solutions of (7) are
uniform-bounded and uniform ultimate-bounded, there exists a continuous

Liapunov functional V(t,¢$) on IXS which satisfies the following conditions

(1) u(|D()9]) < v(e,9) < vl
for all teI, ¢ €C, where u(xr) > 0 for r > H and a(x)?*® as r>°; v(r) is
continuous increasing and v{r)>> as reo;

(i1) V(t,9) < -w(|D()¢|)
or

(11) V(t,9$) < -ov(t,$), >0

(iii) V is locally Lipschitzian, i.e. for any ¢ eC te [0,t0+T] there

10 4

exists some M(T) such that

Iv(ts¢l) - V(t’q)z)l _<_ M”§bl - ¢2”, if “¢i|, i r, some r.

Remark. In the above theorems if the relevant functions are assumed to

be Lipschitzian i.e., for example, for each x, xlE En
|F(t,x) - F(t,x0) | < K| x-x"|
then the Liapunov functionals produced are also Lipschitzian but the
Lipschitz constant M may be dependent on t. Throughout what follows we
shall denote the Lipschitz constant by M.
Define the set S as follows
S = ‘{@8 C: “¢|[Z_H, H may be 1arge.}

We now reproduce the following theorem from Chapter II which we shall need.

Theorem 2.4. Suppose there exists a continuous functional V: [tom]XS
such that:

(1) u(|D()$]) < v(t,d) < v(fo[D>
where u(r) is continuous increasing positive for I>H and u(x)-»® as x>,

and v(r) is continuous and increasing;
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(1) Vg (6,0 < -w(DE)e]),
where «(r) is continuous and positive for r>H.

If D(t) is uniformly stable then the solutions of (7) are uniform-
bounded and uniform ultimate bounded.

Sufficient conditions for ultimate boundedness were earlier given
by Lopes [3] in terms of the so called Liapunov-Razumikhin functions. The

conditions are far from necessary and the treatment is not complete.

3. Boundedness Theorems.

Theorem 3.1. Consider the uncontrolled ordinary differential equation
(3), and the controlled system (4), where A, B, ¢, b, f, and r are
identified in Section 2, and where it is assumed that A and C and f
Lipschitzian in O, A is bounded for le bounded. Suppose that the solutions
of (3) are uniform-bounded and uniform ultimate bounded . Let a, ¢, M be
given by Theorem 2.1. Assume that

(i) fcf(s)ds + o as IO] > o,
0
£(0)=0, of(0)>0 if o#0;
(ii) The scalar function C(t,x) is continuous in x and t and is such
that
lC(t,x)l f_a(lxl),
where a is given by Theorem 2.1
(iii) Suppose the constants C>0, M>0 given be Theorem 2.1 satisfy
ber > (Mlbl + 1)2

Then the controlled system (4) is uniform bounded and uniform ultimate

bounded.
Proof. Let V(t,x) be the Liapunov function guaranteed for "X”_Z R by
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Theorem 2.1, and let V be its derivative along solutions of (4). Then

v

< -cV + M|bf(0)]| .
Define
V2 ag
W='§'—+ ff(S) ds.
0

Because of the properties of V, obviously there exists functions a(r)
and b(r) with properties as indicated in condition (i) of Theorem 2.1
such that

ag - g
a(lx|) + [ £(s)ds < W(x,0) <b(|x]|) + [ £(s)ds
0 0

Because of condition (i) of Theorem 3.1, condition A and B of Yoshizawa's
Theorem 7 [3 p 86] are satisfied for the function W.
The derivative of W along solutions of (4) satisfies
W< —cv? - 2|52 + b |£@)] + |£)]]cle,x)]
On using hypothesis (ii), we obtain

z 4 vM|b| + 1) ]f@)] - rlf(o)l2

ﬁ.ﬁ -cV
The condition (iv) makes this quadratic form in V and |£(o)| negative
definite for ]xI > R. Hence, property (C) of Theorem 7 in 5] is also

satisfied. It follows from Theorem 3 and Theorem 7 of [I5] that the

solutions of (4) are uniform-bounded and uniform ultimate bounded.

Remark. The function W was inspired by a recent paper of Somolinos [l6] on

the absolute stability of the system (5).

Theorem 3.2. Consider the nonlinear functional differential equation (6)
where F, E, £, b, r are identified in Section 2. Assume that the functions

F, E and f are Lipschitzian in x and 0 respectively. Suppose that three

t’
functions satisfy conditions similar to (9) in Theorem 2.2. Assume that

the uncontrolled system (5) is uniform-bounded and uniform ultimate

bounded. Let a, o and M be as determined by Theorem 2.2. Assume that
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(i) £(0) = 0, of(o) > 0, o# O3

g
[ f(s)ds > « as o} + =;
0

(ii) |E(t,¢) j_a(lb”), where a(r) is continuous, increasing positive

for r>H and a(r) > ® as r »> © ;
(iii) 4or > M)b| + 12
Then the solutions of the feedback system is uniformly bounded and
uniform ultimate bounded.
Theorem 3.2 is proved in the-same way as Theorem 3.1 is proved.

One uses Theorem 2.2 to obtain a Liapunov functional V. The function

VZ o
W=t [ £(s)ds
0]
has the required properties of V in Theorem 1 in [1]. This Theorem of
Yoshizawa now ensures that the solutions of (6) are uniform-bounded and

uniform—ul timate-bounded.

Theorem 3.3. Consider the system (8), where the uniformly stable operator
D satisfies

Ipceyo] < mfol
for all t€ I, ¢ £C, where K is the Lipschitz constant for F. The functions
F(t,9), £(0), g(t,D(t)9) are Lipschitzian in ¢, ¢ and D(t)¢$ , respectively.
Suppose the system (7) is uniform-bounded and uniform-ultimate-bounded.
Let u, & and M be as given by Theorem 2.3. Assume that

(s)
(i) £(0)=0 of(0)>0 o#0, [ £(s)ds*® as |o|>»;
0

(ii) |g(t,D()d)| < u|D(t)¢| for all teI, ¢eC
where u(r) is continuous, increasing positive for r>H and u(r)>® as rrw;

the relation
2
‘. Mlbl
(iii) 4or > [i-z(e) + l]
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holds for all 6 €{0,h].
Then the solutions of the feed back system (8) are uniform-bounded and

Uniform—ultimate bounded.

Proof. Since solutions of (7) are uniform-bounded and wniform—ultimate
bounded, Theorem 2.3 guarantees the existence of a Liapunov functional V

on IXS. Differentiating V along solutions of (8) we deduce that
. t —_— 1
< : = _
(10) V(s)(t,¢) < V(7)(t,¢) + M iirg h [yt+h(t,¢) xt+h(t,¢)]

where x = x(t,9),. v = y(t,9) are solutions of (7) and (8) respectively.

Also,
t+h
D(t+R) (¥ =% 4y) = [ bf(o)ds,
t

for any h>0. Since g(t,¢) satisfies (1) there is a h >0 such that

0
1 t+h
Wern = *eml = Ty [ P

for 0 <h<h On using (10), ome obtains

o
2 . M
(11) V8(t,¢)_§ V(7)(t,¢) + 1:§zﬁaj'lbf(0)l,

for all t Z-tO ¢ €C. Hence,

(12) ﬁs(t,¢) < -aV(t,$) + |bECo) |-

M __
1-2.(hy)

Now define
VZ o
W= 7=t f f(s)ds.
0

Differentiate W with respect to t along solutions of (8) to obtain

MV

d 2 2
W< -av© - r|f(@)] + 1—2(h0)

[b£(o) |
+ lf(o)llc(t;D(t)xt)[

< —ov? - rlf(0)|2 + Vlil—_%-l(%%+ 1J lE(o) ],
0
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where we have used hypothesis (ii). Thus

W< -av’ + vﬂﬂ—— + 1} |g@] - rlf(c)lz.
- l—l(ho)
This quadratic function in V and If(c)l is negative definite because of
condition (iii). It is simple to verify that W satisfies conditions

(i)-(ii) of Theorem 2.4. Because D is uniformly stable, the operator D

defined by

E{-t - D(t)xt] ,

0]

where D(t) is given in (2) and X, and O are as above, is uniformly stable.

It follows now that the equation (8) is uniform-bounded and uniform

ultimate bounded.
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)

Differential Equation

-

Absolute Stability of Neutral Functional
of Lurie Type

1. Introduction.

Consider a system of real ordinary differential equations

(1) dx _
ac Ax + bf(g)
g
gf = ch - rif(a)
dt

in which f: (~0,©) + (~0,») is sectionally continuous with gf(g)>0 for
g#0, £(0)=0, A is an n X n matrix, c and b are constant n-vectors and r
is a scalar. The problem of Lurie consists of finding a necessary and
sufficient condition for every solution (o(t),x(t)) of (1) to tend to
(0,0) as towo whenever it is assumed that the uncontrolled equation

(2) dx

ac - A

is uniformly asymptotically stable in the large (cf [17, p 9]). The
entire monograph by Lefschetz was devoted to this problem. Recently,
Somolinos [16] has generalized this problem of Lurie to functional
differential equation of retarded type. 1In this chapter we shall treat
the problem of Lurie when the system is described by functional differ-
ential equation of neutral type. We shall assume that the uncontrolled
system is uniformly asymptotically stable. Utilizing a Theorem of Cruz
and Hale in [5] which ensures the existence of a Liapunov functional,
we then obtain conditions for the uniform asymptotic stability of the

feedback system.
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2. Notations and Preliminary Results.

Let E" be a real n~dimensional Euclidean vector space with norm I-[.
Let th be a given real number. Let C be the space C([—h,O],En)of
continous functions taking [-h,0] into E" with ”¢",,¢3C defined by
o]l = sup{|d(@®]: -h < © < 0}. For any continuous function x(@) on

-h <0<t tl>0 and a fixed £, 0 < t Sty X denotes the function

1’

xt(O) = x(t+0), -h f_@ < 0. Let D(*): [ @) X C - E” be a continuous

to,
function defined by

(3) D(t)¢ = ¢(0) - g(t,9), for t € [t,,)FL,$€C,
n

where g: [tosoo) xXC=>E,

is continuous, g(t,$) is linear in ¢ and is given by

_ 0
(4) g(t,9) = [, [d_u(e,s)19(s).
The function u(t,s) is an n x n matrix te I, se [-h,0], with

elements of bounded variation in s which satisfy the following condition:

(5) | [3 [au(e,)16() | < £(0) sup|o(o) ],

=-0<r<0
for all teI, ¢ C, where £ is continuous nondecreasing for Q¢ [0,h], 2(0)=0

n .
Let A: IXC >~ E be continuous and consider the equation

(6) %E(D(t)xt) = A(t,x%.),

x = ¢, t . eT.
tO 0

The following theorem ensures the existence of a Liapunov functional when

(6) is uniformly asymptotically stable.

Theorem 2.1 [5]. Let D(t) and A(t,*) be bounded linear operators from C

into E such that for some constant L>0, for all ¢e C, for all ;Zﬁo,

[D(e)o| < L]s].

38



If (6) is uniformly asymptotically stable, then there exist positive
constants M, 0 and a continuous scalar function V on I XC such that
(M @ || < Ve, 9 < mlol,

(11)  V(£,9) < -av(t,$),

Gi1) V(e 9)-v(e, 1) < Koyl
for all t 2-t0’ ¢, YecCy V is the usual upper right hand derivate along the
solutions of (6).

In Theorem 2.1 it is assumed that D(t) and A(t,-) are linear.

However, Cruz and Hale [5] stated a similar result when A(t,$) is not
linear in ¢, but g(t,¢) in (3) satisfies

leCt,9) < Lligll, for a1l e>r.

We now state the result and point out the required lemma needed
to carry out the proof in [5]. It was communicated to the author by

Professor J. K. Hale.

Theorem 2.2. Let A(t,0) = 0, and let A(t,9) be uniformly locally
Lipschitzian in ¢ uniformly with respect to t, with Lipschitz constant N.
Let D satisfy locally the condition:

Inco)o] < x|l

for all t>t for some K.

Z-0°
Assume that the null solution of (6) is uniformly asymptotically
stable. Then there exists a S0 >0, aM-= M(SO) > 0, positive definite
functions b(u), c(u), on 0 < u 5_80 and a scalar function V(t,¢) defined
and continuous for te IXC, H¢||5_so such that

(a) |D()d] < v(t,9) < b(plp
() V(t,d) < —c(|D(t)S])
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(&) [V(t,0)) - V(t,0,)] < Mfp, - o,

for all t Z_to, ¢1, ¢2€ c, "¢i”~i SO, i=1,2. The condition (b) can be

replaced by
(b") V(t,$) < -BV(t,$), B>0.
Remurk. The problem with the proof of Theorem 7.2 in [5] is contained
in verifying (c). The following lemma is needed.
Lemma. (Hale) In (6) assume that D satisfies the conditions of Theorem 2.2.

Then for any T, 0, there is a constant L=L(r0) such that

lx, (£5.0,) = x,(£g:0) | < 5750 floy - 0,1
for all ;zﬁo, ¢l, ¢2 for which
e Cegao 0l < xg Tk Cega0 ) [ < 2y

Remark., The proof is not as easy as for retarded equations since one cannot
apply the Gronwall inequality directly one must take small steps in time and
make careful estimates using the properties of D(t).

To prove Theorem 2.2, set

V(t,¢) = suplD(t+s)xt+s(t0,¢)qu(t),
s>0

and proceed as in page 310 of Hale [I8]. Our lemma replaces the inequality

on page 310, bottom line.

The first case considered is the indirect control system

(8) cdl'_t (D(t)xt) = A(t,Xt) + bf(O)y t_>_t0,

o = B(t,D(t)xt) - rf (o),
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in which A is as above, C(t,y) is a scaler continuous function in t>0,

n . . . . .
yeE , and £ is a scalar function which is continuous.

Definition. The operator D in (3) is uniformly stable if there are
constants 0.>0, B > 0 such that the solution of the "difference equation"

D(t)xt =0 ,

|
o

D(t0)¢ =

3

satisfies ”xt” f_Be—a(t_to)"¢"a t©2t,.

3. Main Theorems.

Theorem 3.1. Assume that in (8) the uncontrolled system (6) is
uniformly asymptotically stable. Let o, and K be as given by Theorem 2.1.
Assume that A(t,*) and D(t) are bounded linear operators from C into E"

such that |D(t)¢| §_M"¢” for all t z_to, ¢e C. Assume that:

ag
(i) f f(s)ds > ©, as |o| =+ «;
0

there exists a positive constant ¢ such that
(i1) |B(t,D(0)$)| < c(|D(EIS]),
for all teI, ¢e C;

(iii) for all 6€[0,h] the relation

L2
c + K(b)
bor >( 1-2,(0) ,

holds where % is defined in (5);
(iv) the operator D is uniformly stable.

Then (8) is uniformly asymptotically stable.
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Proof. Since (6) is uniformly asymptotically stable, there exists a

Liapunov functional for (6) given by Theorem 2.1. Let ﬁ(S) denote the
derivative of V along the solutions of (8). Let y = y(t0,¢), x=rx(t0,¢)

be the solutions of (8) and (6) respectively, then the relations (7)

imply that
P £ Loy N R s s re s
9) vV (t,9) =< V_.(t ,0) + iim == |y (£,9) - x (t,9)}
(8) 6 h0 h t+h t+h
But then
t+h
D(t+h) (v .y % 4y) = { bf(o)ds,

for any h>0. Since g satisfies (5) we have that there exists an h0>0

t+h

1
Vel = TmEy [ i@l

for 0 <h f_ho. We now use this inequality in (9) to obtain

(10) Vg(t,9) <V o (6,0) + 1:1;—@? bE(@) ]

Hence, by (7(ii))

{fs(t,d)) < —av + |bE(o) |.

X
1—2(h0)
2 o)

Define W = + fO f(s)ds.

Nl<

The derivative of W along the solutions of (8) satisfies

W< —av? - r]f(o’)lz + V(Fﬂ%ﬁlbf(g)l)"" |£(o)c].
0

By conditions (ii) of Theorem 3.1 and (i) of Theorem 2.1 we obtain from

this that
(11) W< -av? - |E@]?% + v(—Klil— + c)|£() ]
— l—l(ho)
The right hand side of (11) is a quadratic form in V and |f(0)l. It is

obviously negative definite by condition (iii). Hence, there exists a
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positive number y such that

W< v+ 5]
From this it follows that

W 5.*Y|D(t,¢)lz,
so that the second condition of (4.2) in Theorem 4.1 of Cruz-Hale [5] is
met for the Liapunov function W. Trivially, also all the other conditions
in (4.2) are satisfied. Because D is a uniformly stable operator the

operator D given by

DY = P(0) - g(&,¥),

is uniformly stable. Therefore, by Theorem 4.1 of [5] the system

& Bogy = Bt,e)

)
~
(n3
~
<

Il

t (D(t)xt )

o
é(t,y ) - A(t,Xt) + bf(U)
B(t,D(t)x ) - rf (o)

1
-

The proof is complete.

Theorem 3.2. Consider (8), and assume that A(t,0) = 0, A(t,¢) is locally

Lipschitzian in ¢ uniformly with respect to t, and the operator D satisfies

Ip(eyo] < mfisl,

locally in ¢€C, for all qzto and some M. Assume that D is uniformly

stable and that (6) is uniformly asymptotically stable. Let K and B be

as given by Theorem 2.2 and assume that
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(i) For all © € [0,h] the relation

Klbl 2
4R >(; + 1-2.(6)

holds where ¢ is defined in (5), and where c is a constant such that
(i) |, DN ] < c[D(t)d],
for all teI, ¢eC:
o
(iii) f f(s)ds » «», as IOI - oo,

0

020>

Then there exists a 60>0, such that for any €, 0 < € < 60 and any t
there is a §=8(g) such that [|¢]] < § implies ”xt(t0,¢)” < g for all
te [tow], and for any n>0, 0 < n 5_50, there exists a T(n)>0, such that
o]l < 8, implies |ht(t0,¢)” <n, if tz_t0 + T(n). 1In other words all

solutions in the ball S(8g) ¢ C are uniformly asymptotically stable.

Proof. The hypotheses of the theorem imply there is a Liapunov functional

V satisfying the conditions of Theorem 2.2. Choose 60 as in Theorem 2.2.

Let % denote the derivative of V along solutions of (8). If

(8
y = y(t0,¢), X =x(t0,¢) are the solutions of (8) and (6) respectively,

then, as before,

Vg(t,0) < V(r,9) + -1_—2"5}1—0) Ib£(@) ],

provided ”dli ) Our using

0°
2

<

w:

™

(0]
+ f f(s)ds,
0

one easily verifies that the conditons of Theorem 4.1 of [5] are satisfied
for W, provided Ib” 5_60. By the cited Theorem the trivial solutions of

(8) is uniformly asymptotically stable when confined to the ball S(SO) C C.
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Consider the direct control case:

2) da. -
it (D(t:)xt) = A(t,xt) + bf(o),
g = cTD(t)x s
t
X = ¢
o
where the letters are there defined above and ch = -r<0.

Theorem 3.3. Assume that D(t) and A(t,*) are bounded linear operators from C
. n
into E, such that
p(e)o] < Llpl|
for all t Z_to, ¢eC, and
(13) |ACt,¢) | < a|D(t)9], a>0.
Suppose (6) is uniformly asymptotically stable and

(i) £(0) = 0, of(0)>0 0#0, f continuous and

a
[ £(s)ds » », as |o| > =.
0

(ii) Let a and K be given by Theorem 2.1 and let the relation

2
14 Kb
(14) bor >(1——,£,_(i—)_ + alcl) R

hold for all s £€[0,h], where % is defined in (5).

Then (12) is uniformly asymptotically stable.

Proof. Proceed as before, using Theorem 2.1 to obtian a Liapunov
functional V for the system 6. Differentiating V along solutions of
(12) yields

: K

V(12 (t,9) < Vi6) (t,¢) + 12 (i) [blI£@) |-
Set

Vv
W= 5 + f f(s)ds.
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Then |
‘7‘7(12) < -ov? - r| £(0) |2 +%fé—‘;gL
+ lf(c)HcT Alt,x) |
<~ -z |?

) _
+ v[l—_—i—b(—lll—g) . a|c|J l£() ]

where we have used (13) and the property of V. We now use (14) to

deduce the result as before.
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V. TFunctional Inclusion and Controllability of Nonlinear Functional
Differential Systems

1. Introduction.
In this chapter we formulate sufficient conditions for the existence of a

solution of a nonlinear differential ineclusion of neutral type,
L n(t,x,) € R(t,x,) (1)
dt Tt i

where D is a continuous operator on IxC, linear in , indeed of the form (k)

*t
below, and R{*,*) denotes a set valued mapping of IxC into the set of non-
enpty closed convex subsets of E’. The solution is required to satisfy an

initial and terminal condition
x‘t = ¢03 xt = ¢l, (2)

where ¢O,¢le C, C a function space. The theory includes functional differential
inclusions with delay, treated in [19] and ordinary differential inclusions
treated in [20] It is related to the existence result in [21]. Our proof
uses the Fan fixed point theorem in [22].

As a consequence of the existence result, we present sufficient conditions
for the exact function space controllability of the nonlinear neutral control
system

d

—~'D(t,x

at t) = f(t,xt,u), u(t) e Q(t,xt). (3)

We give explicit conditions on D, f and @ which guarantee exact controllability

between two fixed functions. The equation (3) includes those studied by Cruz

and Hale in [5]. They are general enough to include systems of the form
k k
x(t) -} A ()x(t-n,) = ] B(t)x(t-h,) + glt,x(t-h; ), ,x(t-h ) ,u)
i=1 i=1
Our work in controllability generalizes the treatment in [19] anda [20]. Our

viewpoint is different from the recent investigations in [23] by Jacobs and

Langenhop of the systen
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x(t) = A x(t-h) + A x(t) + A x(t-h) + Bu(t).

Their studies are more algebraic and their controls are unrestricted.

2. Definitions and Notations.

Let E” be a real n-dimensional Euclidean vector space with norm
Let h > O be a given real number. We shall denote by C the space C([-h,0],E")
of continuous functions taking [-h,0] into E" with ||¢]|, ¢ €C, defined by

lloll = sup ¢(8) . Also 1D will denote the space C([to,tl],En), and T will
~h<6<0

represent the interval [to,tl]. If x: [to—h,tl] - En, h > 0, then for te I the
symbol x, denotes the function on [-h,0] defined by xt(e) = x(t+8), 6 ¢ [-h,0].
Let G denote an open subset of IXC and let D: G - E® be a given continuous

function. We shall be interested in the differential inclusion
L b(t,x ) e R(t,x, )
dt >t O VA

with x = ¢o, xt = ¢1, ¢0,¢l e C, where D(t,¢) is linear in ¢ and is given by
0 1
0
D(t,9) = [ [aA(t,s)]e(s). ()
-h

The function A(t,s) is an n>n matrix with elements of bounded variation in
s e [-h,0] which satisfy the following condition

B(t) = A(t,0) - A(t,07), det B(t) # O, (5)
o

|/ [aA(t,8)]e(s) - B()9(0)| < y(t,n)[e]],

~h

(t,0) € G, where B(t) is continuous and y(t,h) is continuous for te [to,m),
h > 0, y(t,0) = 0. The mapping R above is set-valued and maps IxC into the set
of nonempty closed and convex subsets of E'. A function x is said to be a

solution of (1) if xe:C([tO—h,tl],En) (t,x,) €G and x satisfies (1) on I.
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In this definition it is D(t,xt) and not x(t) which is continuously differ-

entiable on I. For ¢ eC we say x(t,¢) is a solution of (1) through (t0,¢o)

-

if x(t,6) is a solution of (1) on [to—h,tl] and xto(t0,¢o) = ¢

We shall present sufficient conditions which guarantee the existence of

0

a solution of (1) which satisfiesthe boundary values (2). We shall then apply

this to study the controllability of the system
d
E‘E D(t,xt) = f(tsxt:u)s u(t)eQ(t,xt), (6)

where f is continuous in all its arguments, and D is given in (%) and satisfies

(5). A function x is said to be a solution of (6) through (to,¢o) if x(t ,1)

O’¢0
is a solution of (6) on [to—h,tl] and xto(to,¢o,u) = ¢O. Note that x is a

solution of (6) through (to,¢o) if and only if x satisfies the equation

t
D(t,x.) = D(ty.0,) + { f(s,x_,u(s))ds, teT, (7

0
X, T % (8)
For the results in the existence of solutions of neutral functional differential
equations defined by (6) and (L), see [2k]-[25].

We now introduce the following notations. Let m(t)} > 0, t, < % it,bea

1
given scalar function, nstl([tl,te],El) and let € be the set of all continuous

functions x: [t.-h,t.] >~ E* such that x, = ¢., x
0 1 tO 0 tl

= ¢l, vwhere ¢O,¢le C, and
such that D(t,xt), t eI is continuously differentiable and have derivatives

satisfying
Iii'D(t x )l < m(t) a.e. on I. (9)
dt ¥ -

Let CP be a compact ball in C of radius p. For sufficiently large p, CP can be

chosen nonempty.
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3. Existence of Solutions.

In this section, we give sufficient condition on R to ensure the existence

of a solution of the initial value problem (1) and (2).

Theorem 3.1. Consider the generalized boundary value problem

a
gTs D(t,xt) ER(t,xt) on I, (10)
x, =¢é ,x, =9,

tg 0> Tty 1

¢l,¢2 € C where D is defined in (L) and satisfles (5); and has ker D(t,+) = {0};
and R denotes a set-valued mapping of IxC into the set of nonempty compact con-
vex subsets of E". Suppose R possesses the following properties:

(i) R is upper semicontinuous with respect to inclusion; that is, for

every B > 0 there exist Gi, i=1,2, such that the inequalities

|t—tl < 615 ”Xt"'X’_E” < 62’

imply R(t,xt)éz UB, where U, is the closed B-neighborhood of R(f}xz).

B

(ii) The relation
tl

D(tl’¢l) - D(to,éo)e‘f R(s,xs)ds

%o

holds for all x st.

(iii) For each measurable y(t) satisfying the inclusion y(t)e R(t,xt),

where x(t) eCp, we have

ly(t)| < m(t) a.e. on I, with meLl(I,El).

Then the generalized boundary value problem has at least one solution xe:Cp.

The following set-valued map ¢ on Cp is needed in the proof of Theorem 3.1
and is defined by
d
o(y) = {zscp. 3¢ D(tsz,)e R(t,y,), teI}. (11)
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Note that gz ECP implies that 2, € C. The next two lemmas are crucial in our

proof.

Lemma 3.1. Assume conditions (ii) and (iii). TIf y'eCp, then ¢(y) is non-

enpty and convex-valued.

Proof of Lemma 3.1. The convexity of ¢(y) follows from those of CP and R(t,yt)
and the linearity of D(t,yt) on y, - Now let y'eCP, then from condition (ii),

there exists a measurable function ¢ such that o(t)E:R(t,yt) a.e. on I, such

that
tl
D(t;59,) = D(tg,0.) + [ o(s)as.
t
0
For some z, €C, with max{|z(s)]: ty~h <s j_tl}_ip, set
t
D(t,2z,) = D(ty,0,) + {  o(s)as,
o

and note that

d — -
e D(t,zt) = og(t) ER(u,yt) a.e. on I.

Because y eCp, and o(t) e R(t,yt)

|+ D(t,z) ] = Jo(t)] < mn(v),

by condition (iii). Also
tl
D(t sz, ) = Dltgs0,) + [ ols)ds = D(t;,4,),
1 to

so that z, = ¢l, since ker D(t,*) = {0}. Similarly
1

D(to,zto) = D(to,¢o),

so that

51



Hence z eCp, so that z e ®(y), and ¢(y) is nonempty. This proves the Lemma.

Lemma 3.2. Assume that the conditions of Theorem 3.1 are satisfied. Then ¢
defined in (11) has a closed graph; that is, suppose {yn} < Cp and assume

% e o(y") for n=1,2,-++. If 2t g st and y© > ve CP then

zed(y).

Proof of Lemma 3.2. Because z- e &(y")

4

n n
at D(tszt) ER(t,yt), te I.

Since yI; eCp, by condition (iii),

D(t,z,)| < m(t),

t

where me Ll(I,El). From the above inequality we deduce that

t
Ip(,2,) - Dltgse ) < [ mls)as,
t

and

t
|D(t,2}) - D(E,22)| < [ mls)as.
T

So that

| b(s,zg)ds + 0 when i - =,

E,
i

uniformly with respect to n for each decreasing sequence {Ei}, Ei%_‘—I, with void
intersection. Therefore (see [27], p. 292), there is a sequence {(we retain

the same notation) weakly convergent in Ll(I,En) to a function e Ll(I,En).

Then for each telI,

t
D(t,z,.) = lim D(t,zfé) = lin  [D(t,,) +1f: l.)(s,zg)ds

n-» n->co
0]

t
Dty.60) + [ tls)ds.
%y
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Tt now follows from page 422 of [27] that there is a sequence {Ck} of con-

k+1

27y y,**+} converging in Ll(I,En)

- k .
vex combinations of the function {D(t,z ),D(t
norm to Z. From this sequence {ck} select a subsequence which converges to

Z a.e. Thus almost everywhere on I,

cw) e\ so(U be,ae () (U rsyhe Ry, (12)
k=1 n=k k=1 n=k

where Eb(M) is the closed convex hull of M:;En. Hence
Ji-D(t z,) eR(t,y,)
at %% Wt

and ® has a closed graph. The argument given here is completely analogous to
that in [28] and [29]. The Lemma may also be proved by using the reasoning
in [19] in this case we need only assume that R is closed valued and not
necessarily compact. Note that we used the upper semicontinuity of R in Go).

We now reproduce the Fan fixed polnt theorem of [22] on which our proof

of Theorem 3.1 rests.

Proposition 3.1. Let L be a locally convex topological linear space and k a

compact convex set in L. Let W(k) be the family of all closed convex (nonempty)
subsets of k. Then for any upper semicontinuous point-to-set transformation f

from k into W(k), there exists a point x_e k such that x_e f(x.). Here upper

0 0 0

semicontinuity means that limit x = xo, ynezf(xn) and limit yn = yo implies

Yo sf(xo).

Proof of Theorem 3.1. Observe that the set of all continuous functions on

[to—h,tl] into EU equipped with the sup norm is a locally convex topological
linear space and that Cp is a chosen compact convex subset of this. Also ¢
defined in (1) is a mapping of CP into the set of subsets of CP which has =a

closed graph and is upper semicontinuous with respect to set inclusion. Since
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Cp is compact and ¢ has closed values, ®(y) is compact for-yE:CP. Since
CP and R(t,yt) are convex and D(t,yt) is linear in yt, ® is convex-valued.

Apply Proposition 3.1 to deduce a fixed point xoe ¢(x0); that is xo eC_,

b
d 0 0 0 _ o _ . . .
e D(t,xt) ER(t,Xt), xto = 45> xtl ¢, The function X, is the desired
solution.

L. Controllability.
In this section, we apply the existence theorems for Section 3 to study
the controllability of nonlinear neutral functional differential systems:

g

dt D<tax_t) = f(t;x 5u) on I, (]-3)

t

n . . . . . .
where D: IXC + E is continuous and linear in x, and, as assumed in (5). atomic

t
at 0. We shall assume as basic that the ker D(t,-) is {0}. Also the function f

in (13) is a mapping f: IxCxET > E which is continuous in all its arguments.
The control set is a multi-function Q: IxC - E" with values Q{+t.¢) nonempty,
compact subsets of Em, which is upper semicontinuous with respect to set in-
clusion. Let 7&(9) be the set of all measurable selections u: T + EC with

u(t) e Q(t,x,) for each teI. Tt is well-known that 24(Q) # ¢ (see [30],

t
p. 398). The system (13) is controllable if given ¢O,¢lx;C, there exists a

u e /4#(2) such that the solution x(t,¢o,u) of (13) passing through (to,¢o)

satisfies xt (°,¢O,u) = ¢l° The next result states a sufficient condition for
1

(13) to be controlled from one function to another.

Theorem L.1. Let bg20q € C. (i) Assume that the set

R(t,d) = {f{t,é,u): ue{t,o), tel, ¢cC} (1)

is convex. Furthermore, assume that (ii) the relation

2]

D(ty,6,) = D(t;»4,) e[ R(s,x_)ds,

%o
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holds for all xE:Cp. Also

(iidi) lf(t,xt,u)| <m(t), m ELl(I,El), fox each t eI, xe:Cp and ueQ(t,4).

Then there exists a ue 7;{(®) such that the solution x(t,t0,¢o,u) of (13) satisfies

xto(.atos¢oau) = ¢03 xtl('ato9¢osu) = ¢l

Proof of Theorem 4.1. Because f is continuous and Q@ is upper semicontinuous

with respect to set inclusion and has compact values, R is upper semicontinuous
and has compact values. By (i) R is convex. Condition (ii) is the same as (ii)
in Theorem 3.1 for R defined in (). Condition (iii) here implies hypothesis
(iii) of Theorem 3.1. Since all the conditions of Theorem 3.1 are satisfied

the existence of a solution x of the generalized boundary value problem

é% D(t,xt)e:R(t,xt) on I, (15)
X = ¢., X = ¢, (16)
to 0 tl 1

follows from the theorem. It remains to verify that every solution of (15) that
in addition satisfies (16) can be viewed as a trajectory of (13) with (16) holding.
That this is the case follows from the well-known ideas of Filipvov [31]

which were extended to cover our situation by MeShane and Warfield [32].

This result in {32] was later applied in a way similar to us by Angell in
[33]. The existence of a uce 74(Q) which generates x(t; t0,¢0,u) such that

(L6) holds is now established.

Corollary 4.1. Consider the system

J.c(t)—Al::c(t—h) = B,x(t) + Byx(t-h) + Cu, (17)

1
where the coefficient matrices are constants and the operator D§ = ¢(0)—Al¢(—h)

has {0} as kernel. Let the set Q(t)= U be closed and convex and upper semi-
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continuous with respect to inclusion, where W is compact. Let ¢0,¢le C,

and assume that

(1) $,(0) = 6,(0) + A ¢, (-h) ~ A ¢, (-h) € R,

where t
1
R = f {le(s) + B2x(s—h) + CQ(s)l}as.
t0

Then there exists a us:?@(Q) such that the solution x(t) of () satisfies (16).

Remark. The controllability of the system (T) was recently investigated by

Jacobs and Langenhop in [23]. It was assumed there in [23] that the control

set 1s unrestrained.

The author is very grateful to Professor L. Cesari whose numerous suggestions

led to a considerable improvement of this chapter.
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VI. Controllability of Delay Systems with Restrained Controls

I. Introduction.

Consider the control system

x(t) = L(t,x) + K(t,u), t>t,
¢8)
x(t) = ¢ ¥ te [to—h,to],
where L(t,¢) is continuous in t, linear in ¢ and is given explicitly by
o 0
L(t,9) = ] A (0)é(-t ) + [ A(t,B)$(E)dE, (2)
k=1 k k -1

where each Ak(t), A(t,&) are continuous n x n matrix functions for -e<t, E<w
Qﬁpk, t<h. It is assumed as basic that K{t,u) is continuous in t and u.

Numerous contributions have been made on the controllability of (1) when
power available in (1) are unlimited and the controls are allowed to be any
square integerable functions on [tom] with values in E". 1In [341-[{37] function
space controllability was investigated, while in [38], Euclidean space con-
trollability was studied.

The purpose of this pagper is to consider both the Euclidean and the
function space controllability of (1) when the available control power is
limited and the controls have values restricted to compact and convex subsets
of a Euclidean space, Em. The unifying theme of the present chapter is the
introduction of a growth condition which for systems without delay was exten—
sively used in [39]-[41]. A system is asymptotically proper if, and only if it
possesses this growth condition. In the appropriate space a system is asympto-
tically proper if and only if it is controllable. As a consequence, we show
that under rather mild conditions, the system (1) is controllable if, and only

if its perturbations are controllable.
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The controls are square integrable with values in P, a compact convex
subset of E™ The state of the system is either E" or the function space Wz(l).
It is sometimes convenient to use the larger space C=([—h,0],En) of continuous

function from [~h,0] > E".

2. Preliminaries.

Let E" be a real n-dimensional Euclidean vector space with norm l'l. Let

(1)

h>0 be a given real number. We shall use W, to denote the Sobolev space

wz(l)([—h,o],En) of functions whose derivatives are square integrable. This

space is a Hilbert space with inner product defined by
O L]
(6y) = (x(-0),y(-h)pn + [ (&(£),5(E))pn de
-h

for X,y €W (1)([—h,0],En), where (-,-)En denotes the inner product in .

2

Let h>0 be given. If x: [t —h,tl] E" then for te [to,tl] the symbol X,

0
denotes the function on [~h,0] defined by xt(e) = x(t+6) , 8e¢[-h,0]. Let P

be a closed bounded convex subset of ET and let

P = {u: uE:Lz([tO,tl],P)

Set I E[totl]. Throughout what follows the constraint set P could be replaced
be a sphere or cubic in Em, or the family {P(t): teI of closed convex sets
in E” which are contained in a sphere in E".

In the last case,

P = {u: ueLz([to,tl],Em) u(t)e P(t)}.

We shall assume in the sequel that the L in equation (1) satisfies the

following condition:
IL(t,(b)' < () ”d)”, te [tom)’ pecC

where £ is such that
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t+h
[ 2as <), eeleg,

21 a constant. We shall also assume that K(t,u) is continuous in t and ucIP.
Under the above assumptions the solution of (1) is given by
t
x(t;3t0,0,u) = x(t3t,,9,0) + [ U(t,s)K(s,u(s))ds, £t (3)
t
0

xtO = ¢ in [to—h,to].

Where U satisfies the equation

25 U(E,9) = L(E,U(+,8) €8 (%)
U(t,s) = {0 s-h < t < s
I t =s
if Ut(',s)(G) = U(t+8,s) ~h<0<0 we can write the solution as follows

t

x, (t0,0,u1) (8) = x (£,,6,00(8)+ [ U _(*,8) (8)K(s,u(s))ds (5)

: t

0

tzto & €[-h,0]; or,
t

Feltor®o) = 2 (80:0,00 + [y (o o)k (s, ule))ds
0

Throughout the paper, the initial function &(8)=0 6 E[to—h,to], so that, since
xt(t0,¢,0) is linear in ¢, (see page 82 of Ref 9)
t
x (tgsd,0) = / Ut(',s)K(s,u(s))ds. (6)
t
0
In Euclidean space the solution is
t
x(t,£,0,u) = [ U(e,s)k(s,u(s))ds (7
t
0
Definition. The Euclidean reachable set of (1) at time t is the subset of En
given by

t
IR(t,ty) = {f U(t,s)k(s,u(s))ds: uelP}
t

0
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The reachable set is

IR(to) = U ]R(t,to).

t>t
-0
Fadi) .. - mt JEE P - " ~ - —~ = PR T - -~ - = e . . n
Definition. The system (1) is Euclidean controllable if, and omnly if R(EO)EE .
. . . . . n
Equivalently, (1) is Euclidean controllable if and only if for each xlEE .

there exists a time t >t
- v

and a control uelP such that the solution x(t,t,,0,u)
E N v

of (1) satisfies x(t O,u) = x

1°%o° 1

Definition. The function space reachable set of (1) at time t is the subset

of Wz(l) given by

t
Q:(t,tO) ={{ Ut(',s)k(s,u(@)ds: uelP} .
0

The system (1) is function space controllable if, and only if
-y D
C(to) =W,

1

Equivalently, (1) is function space controllable if for every WE2W2 there
exists tthO and a control ucIP such that the solution x(t;tO,O,u) of (1)
satisfies

xtl(‘,tO,O,u) = .
Definition. Consider the linear system

x(t) = L(t,x,) (8)

where L is defined in (2).

Definition. The trivial solution of (8) is called stable at t, if tozp and

(i) there exists b=b(t0)>0 such that if [¢[<b then the solution x(t0,¢)
of (8) exists for qzto and xt(t0,¢) is in the domain of definition of
L for ;Zto.
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(ii) For every €>0 there is a 6=6(t0,€)>0 such that if ”¢”§§ then the
. solution x(t0,¢) of (8) satisfies "xt(t0,¢)" <e for all t>t,.

The trivial solution of (8) is called stable if it is stable for every t.>0.

o=
It is called uniformly stable if it is stable and the § above does not depend

upon tO.

Lemma 2.1. (Ref 9 p 91) The trivial solution of (8) is uniformly stable if

and only if there is a constant M>0 such that

»

lyrze NI -~
tUlE,8) ] =

-

M, t>5>0.
Remark. This implies that
lu o)l < m,
if (8) is uniformly stable.
The next result and its Hilbert space analogue are crucial in our

investigation.

Lemma 2.2. Let S be a convex set in E containing the origin with the property:
. n .
given any number g , and any non-zero vector ne€ E , there is a vector yeS,
n

such that nty >¢€. Then S = E .

For its proof, see [39, page 7]. We now generalize it in Lemma 2.3.

Lemma 2.3. Let S be a non empty closed convex subset of a Hilbert space H,
with the following property: for each £>0 and each non-zero vector n €H, there
exists a y€8S such that (n,y)>e. Then 5=H. Here (*,*) denotes inner product
in H.
Proof. Suppose S # H, then there is a non-zero vector p € H such that p ¢ S
and such that in

flle - ull=a>o0

s € 8
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for some d. It follows from the discussions on page 49 of [42] that y and
S can be strongly separated by a hyperplane. Consider the point A €S which is

closest to W. Such a point exists by [42, page 10] corollary 1.4.1. Set

then veH, and for any x€ S
(x,v) < (4,v) = [l - Al
Hence, (x,v) is bounded above for ény x €5, a contradiction, hence S=H.
Remark 2.1. The following two statements are equivalent:
(i) given any number €>0 and any non-zero vector n eEn, there is a
vector of yeKC E" such that nty > €
(ii) given any number £ >0
KD SE,
where S€ is an e-ball in EV.

Remark 2.2. The following are equivalent:

(1) (1

(i) given € >0 and any non-zero nE:WZ there is a vector y'EKEWZ
such that (n,y) > €

(ii) given any number € >0
KD SE

(1)

where Se is an €-ball in W2 .

The next definition generalizes the same concept by LaSalle in [39] for non

delay systems.

Definition. The system (1) is asymptotically proper in Wz(l) if for each &>0

and each non-zero vector n ewz(l) there exists a control uelP, a time t 2t
such that
1
(m, [ 7 U, (+,8)K(s)uls) ds) > e. )
tO 1
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(1

where (°*,°) denotes inner product in Wy

The system is asymptotically proper in E" if Wz(l) is replaced by E" and

(9) is replaced by

t
n® [ u(t;,8)K(s,u(s))ds > e. (10)

t

In section 4, we shall show that function space controllability is equivalent

to systems being asymptotically proper when the system (8) is uniformly stable

and K satisfies some convexity assumptions.

3. On the Closure and Convexity of Reachable Sets in Wz(l) and E".

Theorem 3.1. 1In (1) assume that

(i) there exists an N>0 such that

1

|K(s,u(s))]| < N|u]l; ueP, sE:IE[tO,tl], for each I C E7;
(ii) the set,
K(t) = {K(t,u(t)): uePl,
is convex for each tE:El;
(iii) the trivial solution of the homogeneous system (8) is uniformly

stable.

Then the function space reachable set Cth,tO) of (1) at time t1 is closed

and convex in Wzl((—h,O],En).

Proof. Because P is compact and I [to,tl] bounded, IP is a bounded subset of
L2(I,Em). The set P is also closed in LZ(I,Em). Indeed, consider a sequence
{uk} which converges to an element u in LZ(I,Em). Then by Theorem 6 p 122 of
[271 . u, converges to u in measure, so that a subsequepce u, , converges to u
almost everywhere (See p 150 of [27] Corollary 13). Since P is closed in

Em,u(t) is an element of P a.e in I. Since u differs by a null function from

an element of IP, uclIP.
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Because P is assumed convex so is P, so that by Theorem 13 p 422 of [27]
P is weakly-closed in L2(I,Em). Since LZ(I,E ) is reflexive we have
. m
from Corellary 8 p 425 of [27] thatI is weakly-compact in L2(I,E ).

t
Let T(w (") = JT U_ (*,8)K(s,u(s))ds,
t0 1

(1)

m
be a mapping of LZ(I,E ) into v, .

Observe that

T(P) =@ (t,ty)-

Since U is linear and IX(t) convex, G:(tl,to) is convex. We now prove that T

is continuous, and hence weakly continuous (see [27], Corollary 5 p 420).
Indeed
. tl
Ity <~ Ju, (-,9)K(s,u(s)) [ds
t 1
0
1
< [lv, Gl Ix(s,u(s))as.
t 1

0

Because (8) is uniformly stable we have by Lemma 2.1 that

Ith(',S)” <M,

for some M>0 and all s e[to,t Hence by condition (i) of Theorem 3.1

l]'

t1
ITCu) || < nM [ Juis) Jas.
%o

By Holder inequality,
ol < VT Egall, 5 so

that T is continuous. Because T is weakly continuous, and P weakly compact

in Wz(l), and so weakly closed.

Since CL(tl,to) is both convex and weakly closed, it follows from Theorem 13

€D

p 422 of [27] that CE(tl,tO) is closed in W, . This completes the proof.
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Remark. If K(t,0) = 0, O0cP then O ed:(t,to) for each £t and Cﬁ(to) is

nonempty and convex.

Proposition 3.1. In (1) assume that K(t,0) = 0, O0€P then the Euclidean

reachable set]R(t,to) of (1) at time t is nonempty, and convex. Also, the

Euclidean reachable setIR(tO) of (1) is nonempty and convex.

Proof. Because 0€P and K(t,0)=0. OEIR(t,tO) for each t>t Since also

0°

ty <t < t,, OEIR(ty). Recall that

R(t,t,) < R(ty,ty) by <ty o

IR(t,t,) { { U(t,s)K(s,u(s))ds: ue P}

o

t
= f U(t,s)q(s)ds: q(s) measurable, gq(s) € K(s,P)},
t
0

so that the convexity of R(t,t.) follows from a well-known theorem (see [43]
Theorem 3 or [44, Theorem 1]). Since

IR(tO) = U IR(t,tO), OeIR(t,tO)
t>t,

for each t éndIR(t,tO) CIR(t ,to) for tl-i tZIR(tO) is also convex. This

completes the proof.

4. Controllability.

This section contains the basic results of this chapter from which other
results are deduced in the next sections.
Theorem 4.1. In (1) assume that:
(i) there exists an N>0 such that
|K(t,u(t))| S_N"u", ue P, te I, for each IE[to,tl];
(ii) the set
K(t) = {K(t,u(t)): uelP}

Is convex for each te E™;
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(iii) the trivial solution of the homogeneous system (8) is uniformly
stable.

Then (1) is function space controllable if, and only if it is asymptotically

proper in Wz(l).
Proof. The conditions of the theorem yield that the function space reachable

(1). (See Theorem 3.1), for

¢h)

set CC(tl,tO) is a closed and convex subset of Wz

each t.>t Then for

1280 Assume that (1) is asymptotically proper in W2

(1)
2

each €>0 and each non-zero vector Ne W there exists a control u€ P, a time

>
t 2ty such that
1
(, f U, (+,8)K(s,u(s))ds) > .
tg 1

Since ytZGXtO) is the same as there exists a tlztO a ue IP such that

f1
y = f Ut (*,s)K(s,u(s))ds,

t0 1

our assumption that (1) be asymptotically proper is equivalent to: for each

2(1), there exists a tlit

(n,y) > €.

€>0 and each n e W and a y€ C(tl,to) such that

0

It follows from Lemma 2.3 that there exists a tlzto such that

1

. (L
that is, W2 =G:(t0).
. (1) D) .
For necessity, let €>0, n eWé , and choose ¢l€ W2 to satisfy

(T]’(.bl) Z_ E'

Let tthO, ue P be such that

th(' ’tO’O)U) = ¢l-

then
£
[ 7 U, (-,8)K(s,u(s))ds = d;

t 1
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and
1
(M, [ 7 U (,8)K(s,uls))ds) > E.
t
0

The proof is complete.

Corollary 4.1. Consider the system

x(t) = L(t,xt) + B(t)u(t), uelP (11
where B is continuous, and L is given by (2). Suppose the trivial solution of

(8) is uniformly stable. Then (11) is function space controllable if, and

;7 == LAUAICL 0N S e Lulllliellable 12 3 1]

only if (11) is asymptotically proper in Wz(l).
Proof. Since P is convex,
IK(t) = {B(t)P} is convex.

Condition (i) is also satisfied: take N to be the uniform bound of B(t) on

each compact interval I. The corollary now follows from Theorem 4.1.

Theorem 4.2. In (1) assume that K(t,0) = 0, and Oc P. Then (1) is Euclidean
controllable if, and only if (1) is asymptotically proper in E".
Proof. By the hypothesis and Proposition 3.lﬁR(t,t0),1R(tO) are both convex and
nonempty.

For sufficiency, assume that (1) is asymptotically proper in E". Then

for each >0 and each n aEn, there exists a control ue P a time t,>t, such that

1-0

t t1
n f U(tl,s)K(s,u(s))ds > €.

to

that is, for each >0 and each ueEn, there exists a tlzpo, and yeIR(tl,tO) such

that

t
nyz2e-

By Lemma 2.2, we have that there exists a tlzto, such that
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E = IR(tl,tO);
that is,
EM = U R(t,t.) = R(t,).
0 0
t>t,

For necessity, let €>0, n g E" and choose xlE:En to satisfy

Let tlzto, u€IP be selected such that x(tl;tO,O,u) = X;.

Then
£y
J7 ute ,9)K(s,uls))ds = x5
to
and
e
n- [T U(es)uls,uls))ds > e,
t

0

that is (1) is asymptotically proper in E". This completes the proof.

5. Perturbed System.

Let -
x(t) = L(t,xt) + g(t,u), (12)
be a perturbation of the system (1):
%x(t) = L(t,xt) + K(t,u). (13)
Suppose g is continuous in t and u. If our system represents a physical process
that involves approximated parameters, the next results give conditions under

which the system can be assumed to be controllable.

Theorem 5.1. In (12) and (13) assume that g satisfies the following conditions
on K:
(i) there exists an N>0 such that
|R(E,ut))] < N|lu]l, ue, tel,

for each IE[to,tl];
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(ii) the set

K(t) = {K(t,u(t)): ueP}

2o mmmTro £mee nmpml 2 T
LS5 CLllvEA LUL €d4Cll L & 1,

(iii) Suppose the trivial solution of the homogeneous system (8) is
uniformly stable;

(iv) Let h be a function defined by

‘h(t) = S'UP”Ut (*5t) "Ig(t,u)—K(t,u)l, tl.?_tz.to
uel 1

and assume that h is integrable on [tow).
Then (13) is function space controllable if, and only if (12) is function

space controllable.

Proof. Define

|ln] = [ h(s)ds,
to

(1)

and let >0 and n ewz

be given. If (12) is function space controllable,

then there exists a uelP and a tZﬁO such that

t

(M, [ U (.9)8(s,u(s))ds) > € + [hllinl.
t
0

Hence,
t

(M, [ U (,8)K(s,u(s))ds)
t
O ¢
(n’ f Ut(’aS)g(SsU(S))dS)
o

t t
(, | Ut(',S)g(s,u(S))dS) -, f U (*,8)K(s,u(s))ds))
ty tg

t
m, f Ut(',S)g(s,u(S))dS)
%o

iv

t
- I(n’ f Ut(',s)[gs,u(s)) - K(s,u(s))]ds)l,

to
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> e+ |nlln] - Inl|n] =€ .
It follows from Theorem 4.1 that (13) is function space controllable. We can

prove the converse in the same way. This completes the proof.

Theorem 5.2. In (12) and (13) assume that K(t,0) = g(t,0) = 0 and that OeP.
Let h be a function defined by

h(t,s) = sup lU(t,s)lIg(s,u) - K(s,u)l t>s>t
_—0
ug IP

and assume that h is integrable in s E[to,m) for each t>s then (12) is
Euclidean controllable if, and only if (13) is Euclidean controllable.
Proof. Define

e o]

[n] = [ h(w,s)ds,

t,

4]
and let >0 n eE" be given. Suppose (12) is Euclidean controllable then there

exists a ueIP and a ;zﬁo such that

t
nt [ U(t,s)g(s,u(s))ds > e+ |nlln].
t
0]

Proceed as in the proof of Theorem 5.1 to complete the proof.

6. Euclidean Controllability of Perturbed Systems

In this section we examine the Euclidean controllability of the nonlinear

delay system

%(t) (14)

x(t)

L(t,xt) + K(t,u) + g(t,xt,U), t>t,,

il

0, Y¥te [to—h,to],
which is a perturbation of (1). We assume as basic that L and K are as given

in the previous sections and that g is continuous in all its arguments and

D)
9 .
U(t,s)g(s,¢,u) is integrably bounded; that is, there exists a function m(S) which

is integrable in [tow) such that |U(t,s)g(s,¢,u)| < m(s), for all t>s ¢e Wz(l), ucIP.

g(t9,0) = 0, for all tE:El, bewW We assume that for each t>s the function
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For systems without delay, this problem was investigated in [45] . We
now utilize the necessary and sufficient condition in Section 4 and the same
approach as in [45] to deduce our result. For a similar investigation where
the controls are assumed continuous and unrestrained see the recent paper by

Dauer in [46] for a special case of (14).

Theorem 6.1. Assume that g(t,¢,u) in (14) satisfies a local Lipschitz
condition in ¢e C and that
(i) U(t,s)g(s,d,u) is integrably bounded ,
(ii) the set
{K(t,u) + g(t,p,u): uclP},
is convex for all qzto, ¢e C;
(iid) K(t,0) = g(t,$,0) = 0, 0P
Then (14) is Euclidean controllable if, and only if (1) is Euclidean
controllable.

The next Lemma is needed in our proof of Theorem 6.1.

Lemma 6.1. Assume that (1) is Euclidean controllable and U(t,s)g(s,¢,u)
integerably bounded. Suppose K(t,0)=0, 0c IP. Let xle En. Then there exists
a time tthO such that: for any ¢tg:C, te [to,tl]EI, there exists a control

uelP, such that the solution Y of

x(t)
x(t)

L(t,xt) + K(t,u) + g(t,cbt,u(t)),

HI

0, for te [to—h,to],

satisfies w(tl) = X

Proof. Because U(t,s)g(s,qfu(s))ds in integrably bounded there exists an N>0

such that
t
| [ ule,s)els,9_,uls))ds| < N
to
71



for all t>t ¢s€C, s E[to,tl] and uelP.

0
It follows from Remark 2.1, Lemma 2.2 and Theorem 4.2 that we can choose

a time t.>t  so large that if € = 2N+r, where r>|x then

-0 ll’

t
R(t,,t) =1 { Ut ,9)K(s,u(s))ds: ue®} o5,
0

It follows from the convexity ofim(tl,to) that
t
X € {f 1 U(tl,s)K(s,u(s))ds + g(s,¢s,u(s))ds: uelP},
t
0

for every ¢te C, teI. Hence for every ¢t€ C, te I there exists a control

uelP such that
t

x = 1 UCt,,8)K(s,u(s))ds + g(s,¢_,uls))ds,
t
0

where | is the indicated solution. This completes the proof.

Proof of Theorem 6.1. Suppose (1) is not Euclidean controllable, then by

Theorem 4.2; (1) is not asymptotically proper. Hence, there exists a €>0,

a vector nN#0, nte E" such that

t
n f U(t,s)K(s,u))ds < g,
t

0
for all qzto and all ueIP. Since U(t,s)g(s,d,u) is integrably bounded, there
exists an N such that |
t
n [ U(t,s)g(s,d,u(s))ds < N,
o

for all t>t_, ue P, and ¢ €C.

0

n
Now choose any x,€E , such that

1
nxl > ¢ + N.
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If there exists a u€IP such that the solution Y(t) = P(t;t.,0,u) of (14)

0’

satisfies w(tl) = for some t then

Xl,
t

x = [ L uce,s) [K(s,u(s)) + g(s,P ,uls))]ds,

to

l’

and nxl < e + N, a contradiction of the way x, was chosen. Hence, there does

not exist such a ueIP, and a tl with the indicated property. This implies that
(14) is not Euclidean controllable.

The remainder of the proof is analogous (with slight modification) to the
proof of Theorem 2.1 pages 259-261 of [45]. We shall only outline it. Assume

(14) is Euclidean controllable and fix x,eE". Let t >t

1 1 be given by Lemma 6.1.

0

Then given any wOEC, there exists a control uOEJP such that the solution ¥ of

x(£) = L(t,x) + K(t,up(t)) + glt,0,,u,(t)) ¢

0
x(t) 0 Mte [tg=h,t,]
satisfies w(tl) = %;. This solution is given by
) t
ll)(t) = f U(t,S) [K(S,u (S)) + g(S,QbO,U(S))]dS- (15)
t

0
Let

¥(¢y) = {¥: ue P, ¥ given by (15), ¥(ty) = x;}

Then Y is defined on C.

From Lemma 6.1, W(¢0), ¢OE:C is non empty.

Because K and g are continuous and P compact and because U(t,s)g(s,¢,u)
is integrably bounded ¥(¢) is bounded for each ¢ C. It is also a convex set
for each ¢ e C, because of condition (ii) of Theorem 6.1. The arguments cited in
[45] carry through to show that ¥ has a closed graph; that is, if {¢i},{¢i}

are two sequences of continuous functions such that
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lo; = ¢1 >0, o, -9l >0, as i >,

¢i €W(¢i), for each i, then

vev(d).
Let TM denote the colsure of the range of ¥ on C, thenMM C C, and IM is
bounded. Because K and g are continuous on a compact set and therefore
bounded, ™M is equicontinuous and thus by Ascolis Theorem compact. We have
now shown that

Y: M>W(M, W(M) is family of closed convex (non empty) subsets
of ™, and that ¥ is an upper semi continuous mapping.

The result now follows as a consequence of the following Lemma.

Lemma 6.2. [46, Theorem 1]

Let C be a locally convex topological linear space and let 1M be a compact
convex set in C. Let W(IM) be the family of all closed convex (non empty) subsets
of M. Then for any upper semicontinuous point-to-set transformation ¥ from
MM into W(IM) there exists a point YeIM such Y€ ¥(P). Here upper semicontinuity

means that

limit wn wO @ne W(wn) and

limit @n = @O implies @O EW(wO).

7. Function Space Controllability of Perturbed Systems.

In Ref. 3, it was proved that the system

x(t)
x(t)

A(t)x + B(t)x(t-h) + C(t)u(t), on I,

¢(t), v te [to’"hsto],

is function space controllable on I=[tO,T] T>t0+h, if and only if

x(t) = A(t)x + B(t)x(t-h) + C(t)ult) + glu(t)),

x(t)

¢(t) v te [to"'h,to]’

74



is function space controllable, provided g is bounded. It was also proved that
if (16) is function space controllable then so is the system

x(t) = A(t)x(t) + B(t)x(t-h) + C(t)u(t) + g(t,x(t),x(t-h)
provided g is continuous, locally Lipschitzian in x(t), and x(t-h), and bounded.
The controls were taken in LZ([tO,T],En) and are not restricted to a compact
convex subset of ER.

Our aim in this section is to show that when the controls are restricted
to a compact and convex subset of EP, with suitable assumptions, integrably
bounded perturbations (14) of function space controllable systems (1) are function
space controllable. That there are critical differences between controllability
with restraints on the control values and that without such restrictions have
been pointed out in [45]. The basic assumptions on L, K, and g is Section
6 are maintained. Our method of proof is similar to that of Section 6. Through

(1
2

the solution states are in W » we shall work in the larger space C=C([—h,0],En)

when applying Fan Fixed point Theorem of [22].

Theorem 7.1.- In (14), assume that g(t,¢,u) satisfies a local Lipschitz condi-

(1)

tion in ¢€W2

, and that it is continuous in all its arguments. Suppose

(i) Ut(°s)g(s,¢,u) is integrally bounded for t>s i.e. there exists an N

such that

t
[ U(t+6,8)g(s,d,u(s))ds < N < o,

t
0

for all 0 €[-h,0];
(ii) XK(t) = {K(t,u(t)): uelP}

is convex for each t;
(iii) L(t) = {K(t,u(t)) + g(t,d,u(t)): uemP}

(L

is convex for each q3t0,¢ €W, .
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(iv) There exists an M>0 such that
|k(e,w)| <
for all uelP, teIE[tO,tl] and each I.
(v) The trivial solution of (8) is uniformly stable.
Then (14) is function space controllable if and only if (1) is function
space controllable.

We need the following Lemma.

Lemma 7.1. Let the assumptions of Theorem 7.1 hold. Let ®eW (l). Then there

2
1
exists a time tl_ztO such that: For any u:ewz( ) there exists a uelIP such that

the solution x(t;0,u) of

x(t) = L(t,x) + K(t,u(t)) + g(t,¥,u(t)),
x(t) =0 Yte [ty-h,ty]
satisfies Xt = ¢

1

Proof. From the assumptions, there exists an N>0 such that

t
I v (ci9)els,b,uls)ds]] < N
t
0

(1)

for all y €W, "7, t>t; and ue P. Bacause of the controllability assumption,

Remark 2.2 and Theorem 4.1 we can choose a 2ty such that if eg=2N+r, where

it
r>[[e], then
t

Glty,ty) = {{ YU (L 9)ucs,uls))ds wie B} > S
0

(1

where Se is an g¢-ball in W2 .

Since Gth,tO) is convex by Theorem 3.1 we have

o e G:(tl,to) + G(tl’to)s

®

for every Ye W2 s

where

t
G(tl,to) = {f 1 Ut(',s)g(s,w,u(s))ds: ue IP}.
t
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1

Hence, for every VY EWZ there exists a ueIP such that
t
1
® = [ 7 u.(",8)[h(s,uls)) + g(s,¥,u(s))]ds
t
0
= X >
t1

where x(t,to,O,u) is a solution of the equation in Lemma 7.1.

Proof of Theorem 7.1. Suppose (1) is not function space controllable, then

(1)

by Theorem 4.1, (1) is not asymptotically proper: there exists a €>0, 7 &:Wz

N such that

for all t>t., uelP.

0

By assumption, Ut(',s)g(s,Cb,u) is integrably bounded, so that there exists an

N= such that

t

[, [ Ut(',S)g(s,w,U(S))dS)l§N||r1”
t
0

2(1). Now choose @EWz(l)

(,® > e+ N[n|.

for all t>t,, uelP, YeW such that

0

If there exists some ugeIP such that the solution x(tj;t.,0,u) of (14) satisfies

0’

x, =0 at some t then

t 1’
2= [ U (,9)[K(s,uls)) + gls,x ,uls))]as
t 1
0]
and

(M,2) < & + N|nl},

which contradicts the choice of ®. Hence (14) is not function space controllable.

Conversely, assume (14) is function space controllable and fix QJEWZ(l). Let
tl_>_t0 be given by Lemma 7.1. Then given any zpo st(l), there exists uoe P,
such that the solution x(t;to,O,u) of

x(£) = L{t,x.) + K(t,u (t)) + glt,dy,u (D)), ¢,
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x(t) 20, ¥ telty-h,tl,

satisfies X, = $. This solution is given by
1
t

x, = { U (+,8) [K(s,uy(s)) + g(s,y,,u,(s)) 1ds (17)
0

(1)

2 < C. It is convenient to work in the space C when we

Note that IPO, X, EW
apply the Fan-Fixed point theorem.
Let

T(P,.) = {x_€ C: veIP, x satisfies (17), x, = &}
0 t tl

Just as in the proof of Theorem 6.1. T(IPO) is nonempty, convex and bounded for
each I,UO €C. T also has a closed graph. The proof of this last assertion follows
that given in [45] P 259-260. If M denotes the closure of the range of T on
C then M& C, and we can prove, just as in [45] that IM is compact.. Hence

T maps IM into a family of closed convex nonempty subsets of IM and T is upper
semicontinuous. The Fan Fixed point theorem, Lemma 6.2, yields a fixed point

Ye T(P) which is the desired solutiom.
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VII. Conclusion

In chapter IT, we generalize-the Liapunov-Yoshizawa techniques
to give necessary and sufficient conditions for uniform boundedness
and uniform ultimate boundedness of a rather general class of non-
linear differential equations of neutral type. This is then applied
to several linear and nonlinear systems of equations including. the
generalizea Lienard equation of neutral type. The calculations seem
less cumbersome than is the case when Liapunov-Razamikhin techniques
are adopted as suggested in [3]. Only explicit Liapunov-Yoshizawa
functionals are utilized in the applications.

In chapter III, we apply the converse theorems of [15], [1]
and chapter II, to investigate the boundedness of ordinary and here-
ditary systems of Lurie type. When the uncontrolled systems are
assumed to be uniform bounded and uniform ultimate bounded and when
fo f(s)ds > « as |o| > =, £(0) = 0, of(0) > 0 if ¢ # 0, conditions
Zre obtained for the uniform boundedness of nonlinear ordinary diff-

erential systems and hereditary systems of Lurie type described by

the equations

;C(t) = A(t:x) + bf(U):
o(t) = B(t,x) - rf(a);
x(t) = F(t,x.) + vt(o),

o(t) = E(t,xt) - rf(a);

(1) n()x,) = Flt,x,) + b£(0)
(2) o(t) = G(t,D(t)x,) ~ rf(o).

In chapter IV, the problem of Lurie for system described by (1) and

(2) is posed. Sufficient conditions are obtained for absolute
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stability for the controlled system if it is assumed that the uncon-
trolled plant equation
4
(3) a;(D(t)xt) = F(t,xt)
is uniformly asymptotically stable. Both the direct and indirect
control cases are treated.
In chapter V, we use Fan fixed pointed theorem to prove the
existence of a solution of the neutral functional inclusion
< pit,x ) e R(5,x.)
dt T >t
which satisfies the two point boundary wvalues

X = ¢, X = ¢
tO 0 tl 1

where .4, eC = C([-h,0],E"). We then apply this existence result
to present sufficient conditions on f, D and Q which imply exact
controllability between two functions in C for the system

—E%D(t,xt) = £(t,xm), ult) eqlt,x,).

Using a geometric growth condition in chapter VI, we characterize
both the function space and Euclidean controllability of a nonlinear
delay system which has a compact and convex control set. This extends
analogous results for ordinary differential equations and yields con-
ditions under which perturbed nonlinear delay controllable systems are

controllable.
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The treatment in chapter VI on controllability of systems with
limited control power is not quite complete. Consider the system
x(t) = Agx(t) + A x(t-h) + Bou(t)
for example. The treatment in chapter VI does not give easily
verifiable conditions for controllability. The following problem is
suggested. Introduce.the notion of a proper control system. This
concept should be equivalent to controllability for delay systems
with unlimited control power. Prove that if the uncontrolled system
x = L(t,xt) is uniformly asymptotically stable and the cdntrol equation
x(t) = o(t,x.) + B(t)u(t)

is proper then the control system is controllable.
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